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Abstract

In this paper first-order logic with terms is interpreted in the framework of universal
algebra using clone theory. Any first-order language determines a clone of terms and
a predicate algebra of formulas over the clone. It is easy to translate the classical
treatment of logic into our setting and prove the fundamental theorems of first-order
theory algebraically.

Introduction

The theory of clones has been introduced in two previous papers [2] and [3].
In the present paper we are mainly concerned with the applications of clone
theory to mathematical logic, as an extension of the last two sections of [3].

1 Clones

A monoid is an algebra (G, ·, 1) where 1 ∈ G is called the identity and · :
G×G → G is a binary operation such that for any u, v, w ∈ G we have

u · (v · w) = (u · v) · w.

1 · u = u · 1 = u.

A right act over a monoid G is a pair (P, Θ) where P is a set and Θ : P×G → P
is a multiplication such that for any p ∈ P and u, v ∈ G we have

(pu)v = p(uv).
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p1 = p.

Let N be the set of positive integers. If A is any set denote by AN the set of
infinite sequences [a1, a2, ...] of elements of A.

A clone is a set A such that

(C1) AN is a monoid with an identity [x1, x2, ...].

(C2) A is a right act over AN .

(C3) xi[a1, a2, ...] = ai for any i > 0.

Alternatively a clone can be defined as a set A containing a set X = {x1, x2, ...}
together with a multiplication A×AN → A such that for any a, a1, a2, ..., b1, b2, ... ∈
A we have

(D1) (a[a1, a2, ...])[b1, b2, ...] = a[a1[b1, b2, ...], a2[b1, b2, ...], ...].

(D2) a[x1, x2, ...] = a.

(D3) xi[a1, a2, ...] = ai for any i > 0.

2 Transformation Algebras

Let C be a concrete category over the category of sets (such as the of category
sets, lattices or Boolean algebras, or any variety). We shall write compositions
in C from left to right. If P is an object in C we write P P for hom(P, P ).
Then P P is a monoid of transformations on P .

We define a transformation algebra over a clone A to be a pair (P, Θ) where P
is an object in a concrete category C and Θ : P ×AN → P is a multiplication
such that the induced mapping Θ∗ : AN → P P is a homomorphism of monoids.
Algebraically this means that the following conditions are satisfied for any
p ∈ P and a1, a2, ..., b1, b2, ... ∈ A:

(T1) (p[a1, a2, ...])[b1, b2, ...] = p[a1[b1, b2, ...], a2[b1, b2, ...], ...].

(T2) p[x1, x2, ...] = p.

(T3) The function φ[a1,a2,...] : P → P defined by φ(p) = p[a1, a2, ...] is an
endomorphism on P .

If C is a finitary variety (of algebras) then (T3) has the following explicit form:
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(T4) For any n-ary operation f : P n → P on P we have (f(p1, ..., pn))[a1, a2, ...] =
f(p1[a1, a2, ...], ..., pn[a1, a2, ...]).

Suppose P is a transformation algebra.

Let p+ = p[x2, x3, ...],

p− = p[x1, x1, x2, x3, ...].

p∗ = p[x2, x2, x3, x4, ...].

Then (p+)− = p and (p−)+ = p∗

If p ∈ P and [a1, a2, ...] ∈ AN , for any n > 0 we write p[a1, ..., an] as an
abbreviation for p[a1, ..., an−1, an, an, an, an, ...].

We say P is locally finite if for any p there is n > 0 (called a rank of a) such
that p = p[x1, ..., xn]. An element p ∈ P is called closed (or with a rank 0) if
p[a1, a2, ...] = p for any [a1, a2, ...] ∈ AN .

A transformation algebra over A in the category of sets, lattices, Boolean alge-
bras, ... is called a transformation set, transformation lattice, transformation
Boolean algebra, ... over A. Note that a transformation set over A is just a
right act over AN . Thus a clone A is a transformation set over itself.

3 Binding Operations

An abstract binding operation on a transformation algebra P over a clone A
is a function ∀ : P → P such that for any p ∈ P and [a1, a2, ...] ∈ AN we have

(∀p)[a1, a2, ...] = ∀(p[x1, a
+
1 , a+

2 , ...]).

If ∀ is an abstract binding operation, for any positive integer i the conventional
i-th binding operation ∀xi on P is defined by

∀xi.p = ∀(p[x2, x3, ..., xi−1, xi, x1, xi+2, ...]).

If p ∈ P has a finite rank n > 0 then ∀np is closed.

We have ∀x1.p = ∀(p[x1, x3, x4, ...]) = (∀p)+. So ∀p = (∀x1.p)−.
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4 Proposition and Boolean Algebras

A proposition algebra is an algebra (P,∧,¬) where ∧ : P × P → P and
¬ : P → P are functions.

If P is a proposition algebra for any p, q ∈ P let

p ∨ q = ¬(¬p ∧ ¬q).

p → q = ¬p ∨ q.

p ↔ q = (p → q) ∧ (q → p).

0 = {p ∧ ¬p|p ∈ P}.

1 = {p ∨ ¬p|p ∈ P}.

A Boolean algebra is a proposition algebra (P,∧,¬) satisfying the following
conditions for any p, q, r ∈ P :

(B1) p ∧ (q ∧ r) = (p ∧ q) ∧ r.

(B2) p ∧ q = q ∧ p.

(B3) If p ∧ ¬q = r ∧ ¬r then p ∧ q = p.

(B4) If p ∧ q = p then p ∧ ¬q = r ∧ ¬r.

If P is a Boolean algebra then 0 and 1 are singletons and (P,∨,∧, 0, 1) is a
complemented distributive lattice with the partial order on P defined by

p ≤ q ⇔ p ∧ q = p.

for all elements p and q in P .

5 Predicate and Quantifier Algebras

Let A be a clone.

A predicate (proposition) algebra (P, ∀) over A consists of a transformation
proposition algebra P over A together with an abstract binding operation ∀
on P .

A predicate (proposition) algebra with equality (P, ∀, e) over A consists of a
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transformation proposition algebra P over A, an abstract binding operation
∀ on P , and an element e ∈ P of rank 2.

A quantifier (Boolean) algebra (P, ∀) over A consists of a transformation
Boolean algebra P over A and an abstract binding operation ∀ on P sat-
isfying the following conditions for any p, q ∈ P :

(Q1) ∀(p ∧ q) = ∀p ∧ ∀q.

(Q2) (∀p)+ = (∀p)+ ∧ p.

(Q3) ∀(p+) = p.

A quantifier (Boolean) algebra with equality (P, ∀, e) over A consists of a quan-
tifier algebra (P, ∀) and an element e ∈ P of rank 2 satisfying the following
two conditions:

(E1) e∗ = 1.

(E2) e ∧ p = e ∧ p∗.

The axioms (Q1), Q(2), (Q3) and (E1), (E2) are justified by the following
observations:

1. Any abstract binding operation on a predicate algebra satisfying the axioms
(Q1), Q(2) and (Q3) is unique if exists.

2. Any element in a quantifier algebra satisfying the axioms (E1) and (E2) is
unique if exists.

3. There are plenty of concrete quantifier algebras (see Section 6).

We say a quantifier algebra (P, ∀) is nontrivial if 0 6= 1.

We say a quantifier algebra (P, ∀) is simple if 0 6= 1 and these are the only
closed elements of P .

The class of predicate algebras (resp. quantifier algebras) over the same clone
forms a finitary variety.

In the same way we obtain the varieties of predicate (resp. quantifier) Post
algebras, Heyting algebras, frames, etc.

One can show that the variety of locally finite quantifier Boolean algebras
over the initial clone X is equivalent to the variety of locally finite polyadic
algebras of countably infinite degree (cf. [1]). Thus a quantifier algebra over
an arbitrary clone may be viewed as a polyadic algebra with terms.
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6 Interpretations

A left algebra over a clone A is a set M together with a multiplication A ×
MN → M such that for any a ∈ A, [a1, a2, ...] ∈ AN and [m1,m2, ...] ∈ MN

we have

(L1) (a[a1, a2, ...])[m1,m2, ...] = a[a1[m1,m2, ...], a2[m1,m2, ...], ...].

(L2) xi[m1,m2, ...] = mi for any i > 0.

If M is a left algebra over A let P (M) = 2MN
be the set of functions from

MN to the Boolean algebra 2 = {0, 1} with two elements 0, 1. Then P (M) is
a transformation Boolean algebra over A.

Define ∀ : P (M) → P (M) such that for any p ∈ M and [m1,m2, ...] ∈ MN

we have (∀p)[m1,m2, ...] = 1 iff p[m,m1,m2, ...] = 1 for any m ∈ M . Then
∀ is an abstract binding operation on P (M). Let e ∈ P (M) be defined by
e[m1,M2, ...] = 1 iff m1 = m2. Then (P (M),∀, e) is a quantifier algebra with
equality over A, called the function quantifier algebra determined by M .

An interpretation for a predicate algebra P over a clone A is a pair (M, α)
where M is a left algebra over A and α is a homomorphism of predicate
algebras from P to P (M). If P is a predicate algebra with equality e we also
require that α preserves equalities.

Theorem 1 (Godel’s Completeness Theorem) Any nontrivial locally finite
quantifier algebra (with or without equality) over a locally finite clone has
an interpretation.

7 Peano Algebras

Let Fa = (0, ′, +, ·) be a set of symbols. Let X = {x1, x2, ...} be a set of
variables. Let Fa(X) be the smallest set such that X ∪ {0} ⊂ Fa(X) and if
s, t ∈ Fa(X) then the expressions s′, s + t, s · t are in Fa(X).

Define a multiplication Fa(X)×Fa(X)N → Fa(X) inductively for any s, t, t1, t2, ... ∈
Fa(X):

xi[t1, t2, ...] = ti.

0[t1, t2, ...] = 0.

s′[t1, t2, ...] = (s[t1, t2, ...])
′.
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(s + t)[t1, t2, ...] = s[t1, t2, ...] + t[t1, t2, ...].

(s · t)[t1, t2, ...] = s[t1, t2, ...] · t[t1, t2, ...].

Then Fa(X) is a locally finite clone, called the arithmetic clone.

A Peano algebra is a quantifier algebra P over Fa(X) generated by an equality
e ∈ P such that the following elements are equal to 1:

(S1) ¬(e[0, x′1]).

(S2) e[x′1, x
′
2] → e[x1, x2].

(S3) e[x1 + 0, x1].

(S4) e[x1 + x′2, (x1 + x2)
′].

(S5) e[x1.0, 0].

(S6) e[x1.(x2)
′, (x1.x2) + x1].

(S7) (p[0] ∧ (∀(p[x1] → p[x′1]))) → ∀p[x1] for any p ∈ P .

Theorem 2 (Godel-Rosser incompleteness theorem) There is a Peano algebra
which is not simple.

The proofs for Theorem 1 and Theorem 2 will be given in subsequent papers.
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