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Abstract

The primary goal of this paper is to present a unified way to transform the syntax
of a logic system into certain initial algebraic structure so that it can be studied
algebraically. The algebraic structures which one may choose for this purpose are
various clones over a full subcategory of a category. We show that the syntax of
equational logic, lambda calculus and first order logic can be represented as clones
or right algebras of clones over the set of positive integers. The semantics is then
represented by structures derived from left algebras of these clones.

Key words: Clone, Universal Algebra, First-Order Theory, Lambda Calculus,
Polyadic Algebra

Introduction

Let N = {1, 2, 3, ...} be the set of positive integers. Denote by Set the category
of sets.

We will introduce the following fundamental structures for universal algebra,
lambda calculus and first order logic:
1. Clones over N.
2. Left and right algebras of a clone over N.
3. λ-clones, λβ-clones (reflexive clones).
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4. λ-algebras.
5. Predicate algebras with terms in a clone over N.
6. Quantifier algebras with terms in a clone over N.

Note that the class of objects in each category is a variety in the sense of
universal algebra. Four basic observations on algebraization are:
(i) Finitary endofunctors of Set are represented by locally finitary right alge-
bras of the initial clone over N.
(ii) Finitary monads in Set (or finitary varieties) are represented by locally
finitary clones over N.
(iii) The set of λ-terms is represented by the initial λ-clone.
(iv) The set of formulas of a first order language is represented by a predicate
algebra over the clone of terms.

The theory of clones considered in this paper originated from the theory of
monads. Two equivalent definitions of monads, namely monads in clone form
and monads in extension form given by E. Mane [11], can be interpreted as
only defined over a given subcategory of the category. These are clones and
clones in extension form over a full subcategory. It turns out that these two
new concepts are no longer equivalent unless the subcategory is dense. But
morphisms of clones, algebras of clones, and morphisms of algebras can all be
defined for these two types of clones. Since many familiar algebraic structures,
such as monoids, unitary Menger algebras, Lawvere theories, countable Law-
vere theories, classical and abstract clones are all special cases of clones over
various dense subcategories of Set, the syntax and semantics of these alge-
braic structures can be developed in a unified way, so that it is much easier
to extend these results to many-sorted sets.

Just as monads arise from adjunctions of categories, clones arise from “adjunc-
tions” of species. The notions of clones and species introduced in this paper
are very easy to manipulate, yet they are more flexible than the traditional
notions of monads and adjunctions.

Whenever it is convenient in this paper composition of morphisms in a cate-
gory is written from left to right.

A species N/C consists of a category C and a full subcategory N of C; if
N = C then we say that N/N (or simply N) is a singular species. If N′/C′ is
another species, a function (resp. functor) T from N′/C′ to N/C is a function
T : ObC′ → ObC (resp. functor T : C′ → C) such that
(i). ObN′ = ObN.
(ii). C′(A, B) = C(A, TB) for A ∈ N and B ∈ C′.
(iii). r(fg) = (rf)g (resp. f(Tg) = fg) for C, D ∈ N, r ∈ N(D, C), f ∈
C′(C, A) and g ∈ C′(A, B).
Note that the composite of two functions (or functors) of species is a function
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(or functor) of species.

A clone theory (resp. clone theory in extension form) over a full subcategory
N of a category C is a pair (N′, T ) where N′ is a category and T is a function
(resp. functor) of species from N′/N′ to N/C. We often simply say that N′

or T is a clone theory over N.

Suppose N/C is a species. A species over N/C is a pair (N′/C′, T ) consists
of a species N′/C′ and a functor T : N′/C′ → N/C.

If (N′/C′, T ) is a species over N/C then (N′, T |N′) is a clone theory over N,
called the clone theory of N′/C′, denoted by Clone((N′/C′), T ). Note that N′

consists of free objects of C′ over N with respect to T : C′ → C.

Let (N′, T ) be a clone theory in extension form over N. By an (N′, T )-species
we mean a species over N/C with (N′, T ) as its clone theory.

The class Sp(N′, T ) of (N′, T )-species viewed as concrete categories over C

forms a meta-category. Clearly (N′, T ) is the initial object of Sp(N′, T ). Sp(N′, T )
has a canonical terminal object CT , called the Eilenberg-Moore species of
(N′, T ), consisting of T -algebras (see Definition 12).

Remark 1 1. A functor from a singular species to a species is a clone theory
in extension form.

2. A functor from a species to a singular species is equivalent to an adjunction
of categories.

3. A functor from a singular species to a singular species is equivalent to a
monad.

4. Any functor from a species to another species determines a clones theory
in extension form.

If N is dense in C then the notion of a clone theory over N is equivalent to
that of a clone theory over N in extension form. In practice one is primarily
interested in the clone theories over a dense subcategory. For this reason if N

is not dense in C we always choose a proper subcategory C′ of C containing
N such that N is dense in C′. Hence the distinction between the two types of
clone theories is not essential.

Since a clone theory (or clone theory in extension form) over N gets objects
and morphisms from C, they can be intrinsically defined as algebraic systems
in C, called clone systems. The study of clone systems is presented in Section
1. Since clone theory and clone system are essentially the same, they are often
referred just as a clone.
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If (N′, T ) is a clone over N, then there is a functor F T : N → N′ preserving
objects and sending each f : A → B in N to fη : A → TB in N′, where
η : B → TB is the identity of B ∈ N′. Linton in [7] defines a more general
notion of a clone over a subcategory N of a category as an arbitrary functor
N → N′ which is bijective on objects. Our definition of algebras for a clone
theory coincides with that of Linton’s under functorial consideration. Thus all
the results of [7] apply to clone theories. We mention that all the examples
given in [7] p.22 are in fact clones over dense subcategories.

Example 0.1 Examples of clones over dense subcategories are abundant. Here
are some of the most elementary examples.
1. A clone over a singleton in Set is a monoid.
2. A clone over a nonempty set N in Set is a unitary Menger algebra T of
rank |N |.
3. A clone (resp. the dual of the clone theory) over the full subcategory {0, 1, 2, 3, ...}
of Set is a clone in the classical sense (resp. Lawvere theory) (note that here
each integer n ≥ 0 is viewed as a finite set with n elements).
4. The dual of a clone theory over the full subcategory {0, 1, 2, 3, ..., N} (or
(0, 1, N)) of Set is a countable Lawvere theory in the sense of [17].
5. The dual of a clone theory over the full subcategory {1, 2, 3, ..., N} (or (1, N))
is equivalent to an algebraic theory (see section 3).
6. A clone over a one-object-category is a Kleisli algebra. Any clone over an
infinite set N in Set defines a Kleisli algebra (see section 5).
7. Other important examples are clones over the subcategory of finitely pre-
sentable objects of a locally finitely presentable category.
8. A clone (or clone in extension form) over N = C is equivalent to a monad
in extension form, or a Kleisli triple in C in the usual sense. Hence the notion
of a clone generalizes that of a monad.

The simplest type of clones are clones over an object N of a category C. Recall
that a left act of a monoid M (or a left M-act) is a set D together with a map
M ×D → D such that ed = d where e is the unit of M and m(m′d) = (mm′)d
for any m, m′ ∈ M and d ∈ D. A right act of M is defined similarly.

Remark 2 A clone over an object N of a category C is an object A of C

such that hom(N,A) is a monoid and r(fg) = (rf)g for all r : N → N
and f, g : N → A. Suppose A is a clone over N . A left A-algebra is an
object D such that hom(N, D) is a left act of the monoid hom(N,A) and
r(fm) = (rf)m for all r : N → N , f : N → A and g : N → D. A right
A-algebra is a right act of hom(N,A).

Remark 3 A clone in extension form over an object N of a category C is
an object A such that hom(N,A) is a monoid together with a homomorphism
T : hom(N,A) → hom(A,A) of monoids such that f(Tg) = fg for f, g : N →
A. A left A-algebra is then an object D such that hom(N, D) is a left act of
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the monoid hom(N,A) together with a homomorphism H : hom(N, D) →
hom(A, D) of left acts of hom(N,A) such that f(Hg) = fg for f : N → A
and g : N → D. A right A-algebra is a right act of hom(N,A).

Assume C = SetS for a set of sorts S, and N = {Ns}s∈S is an S-sorted set.
Then a clone in extension form over N is an S-sorted set A = {As}s∈S such
that hom(N,A) is a monoid and there is a homomorphism T : hom(N,A) →
hom(A,A) of monoids such that f(Tg) = fg. Since

hom(A,A) =
∏

s∈S

hom(As,As),

T is uniquely determined by a sequence of maps As×hom(N,A) → As. Thus
algebraically a clone in extension form over N can be defined as follows:

Definition 4 A clone in extension form over an S-sorted set N is an S-
sorted set A together with maps {µs : As × hom(N,A) → As}s∈S and a map
x : N → A such that for any a ∈ As and f = {fs}, g = {gs} ∈ hom(N,A):
(i) (af)g = a(fg) where (fg)si = fsig for any s ∈ S, i ∈ Ns and fsi = fs(i).
(ii) xsif = fsi.
(iii) ax = a.

If A is a clone in extension form over an S-sorted set N then each As is a right
hom(N,A)-act and hom(N,A) is the product

∏
s∈S hom(Ns,As) of these right

hom(N,A)-acts. Categorically a clone in extension form over N is a category
with a dense object A∗ and an S-indexed set of objects {As}s∈S such that A∗

is the product
∏

s∈S A
Ns

s .

Let SetS
∗ be the set N of S-sorted sets such that Ns is not empty for any s ∈ S.

An S-sorted set N is dense in SetS
∗ if each Ns has at least two elements, thus

the notions of a clone and a clone in extension form over such N are equivalent.

Let N be the set of positive integers. Let NS = {N}s∈S. Then the above analysis
applies to clones over NS. Let A be a clone over NS. A left A-algebra has the
following form:

Definition 5 A left A-algebra is an S-sorted set D together with maps {µs :
As × DN → Ds}s∈S such that for any a ∈ As, f ∈ AN and g ∈ DN:
(i) (af)g = a(fg) where (fg)si = fsig for any s ∈ S and i ∈ Ns.
(ii) xsig = gsi.

Denote by Rg(A) and Lg(A) the categories of right and left A-algebras re-
spectively. Then Rg(A) is a topos and Lg(A) is an algebraic category over
SetS.

A clone A over NS is locally finitary if for any a ∈ As we have ae = a for
a map e : NS → A such that e(NS) ⊆ x(NS), e(NS) has finite components
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and ee = e; e(NS) is then called a support of a. The assertions 2 and 3 of the
following main theorem for many-sorted clones extend a similar theorem for
(one-sorted) clones over N due to W. D. Neumann [14]:

Theorem 6 1. The full subcategory of locally finitary clones over NS is a
coreflective subcategory of the category of clones over NS.
2. The class of left A-algebras of a locally finitary clone A over NS is a finitary
S-sorted variety.
3. Conversely, any finitary S-sorted variety V as a concrete category over
SetS is equivalent to the category of left algebras of the clone determined by
the free algebra of V on NS.

Suppose B is any right A-algebra. In preparation for the definitions of λ-
clones and predicate algebras with terms in A we need an explicit form for
the exponent BAs in the cartesian closed category Rg(A) with respect to the
right A-algebra As. It is a crucial fact for our purpose that the underlying
set of BAs can be identified with the set B itself, so that a homomorphism
BAs → B reduces to a unary operation B → B (which is not an endomorphism
of right A-algebras in general). This can be seen as follows.

Since As and B are two right acts of the monoid ANS , the right act BAs can
be defined as hom(ANS × As, B) with action f → fu of u : NS → A on
f : ANS × As → B defined by (fu)(u′, b) = f(uu′, b) for any u′ : NS → A
and b ∈ B (cf. [10], p.62, ex.5). Since N is infinite, AN

s ×As is isomorphic to
AN

s as right A-algebras. Since AN

s is generated by xs = [xs1, xs2, ...], A
N

s ×As

is generated by x∗
s1 = ([xs2, xs3, ...], xs1). Fixed such an isomorphism via x∗

s1.
We obtain an isomorphism ANS ×As =

∏
s∈S A

NS

s ×As to ANS =
∏

s∈S A
NS

s .
Since ANS is the free right act generated by the unit x, there is a bijective
map hom(ANS , B) → B which maps f to f(x) for f : ANS → B. Thus the
underlying sets of the following right ANS -acts are bijective

BAs = hom(ANS ×As, B) ∼= hom(ANS , B) ∼= B.

Note that as right A-algebra BAs and B are not isomorphic in general. In
section 5 we will give a direct definition of BAs using B (for the one-sorted
case). The extension for many-sorted cases is straightforward.

Formally one may just specify a type of unary operations on B corresponding
to homomorphisms from BAs to B (under the identification of BAs with B
via x∗

s1), called an abstract binding operation (on xs1). Unlike classical binding
operation which binds a specific variable, an abstract binding operation only
reduces the size of the support of a finitary element of B by 0 or 1. Elementary
properties of abstract binding operations (for the one-sorted case) are given
in section 4. The importance of an abstract binding operations lies in the fact
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that the classical unary binding operations such as

λx1, λx2, λx3, λx4, ...

∀sx1, ∀sx2, ∀sx3, ∀sx4, ...(s ∈ S)

∃sx1, ∃sx2, ∃sx3, ∃sx4, ...(s ∈ S)

can be defined as derived operations from abstract binding operations: λ, ∀s

and ∃s, respectively, provided the substitutions of variables have been defined.
Thus to define λ-terms or formulas for a first order language, one could take
abstract binding operations (e.g. λ or ∀s) as the basic operation, and define the
other classical binding operations via substitutions, as λ-terms form a clone,
and formulas of a first order language form a right algebra of the clone of terms.
This is the ideal approach to solve the problems of “variable capture” caused
by substitutions in lambda and predicate calculus: at one hand the trouble-
some process of renaming bound variables is push into the proper background,
on the other hand the classical binding operations are still available, which
are more readable than an abstract binding operations. This is probably well
known for lambda calculus (cf. P. Aczel [1] 2.3.1).

Definition 7 A λ-clone is a clone A over N together with two homomor-
phisms A2 → A and AA → A of right A-algebras.

The class of λ-clones forms a (non-finitary) variety. Therefore free λ-clones
over any give set (called “holes” in literature) exist. The initial λ-clone is
precisely the set of λ-terms in de Bruijn’s notation (or the set of classical
λ-terms modulo α-conversions). A clone A over N is called reflexive if AA is
a retract of A, extensional if AA is isomorphic to A. One can show that a
clone is reflexive (resp. extensional) if and only if it satisfies the axiom for β-
conversion (resp. both β and η-conversions). The class of reflexive clones also
forms a variety. The left algebras of the initial reflexive clone are λ-algebras
considered in literature(cf. [3]).

Definition 8 An S-sorted predicate algebra with terms in an S-sorted clone
A over NS is a right A-algebra P with the following homomorphisms:
1. ⇒: P 2 → P ,
2. F : P 0 → P .
3. ∀s : PAs → P for each s ∈ S.
We also assume that there are identities ≈s ∈ P for each s ∈ S, where ≈s has
support {xs1, xx2}.

Any left A-algebra D determines a predicate algebra P (DNS) where P (DNS) is
the power set of DNS . A model of a predicate algebra P is then a pair (DNS , µ)
where D is a left A-algebra and µ : P → P (DNS) is a homomorphism of
predicate algebras. An element p ∈ P is logic valid if µ(p) = T for any model
of P , where T = (F ⇒ F). For an S-sorted first-order language L the set T (L)
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of terms of L is naturally a clone over NS, and the set F (L) of formulas of
L is a right T (L)-algebra. which is an S-sorted predicate algebra with terms
in T (L). The proof theory and model theory of L can then be carried out by
algebraic considerations for the predicate algebra F (L) and its models.

The paper is organized as follows. Section 1 consists of formal definitions of
clones and left algebras of clones over a subcategory. In section 2 we study
various properties of clones over N. As applications of clone theory to universal
algebra we discuss briefly how to define the notions of hyperidentities and
hypervarieties in terms of C-clones. Also a purely algebraic approach to Morita
theory for finitary varieties (i.e. locally finitary clones) is sketched at the end
of the section. In section 3 we introduce a new type of algebraic theories
consisting of only two objects, which are equivalent to clones over N. In section
4 a general theory of binding unary operations on a right algebra of a clone
is introduced. It is used to define λ-clones in section 5. Section 6 contains a
simple modified classical approach to one-sorted first-order theory, using De
Bruijin style formulas to provide a better substitution theory. The notion of
one-sorted predicate algebra is given in section 7.

1 Clones

Let C be a category. Let N be a full subcategory of C.

Definition 9 A clone over N is a system T = (T, η, ∗) consisting of functions
(a) T : ObN → ObC,
(b) η assigns to each object A in N a morphism ηA : A → TA,
(c) ∗ assigns to each ordered triple (A, B, C) of objects of N a function

∗ : C(A, TB) × C(B, TC) → C(A, TC)

such that for any r : A → B, h : A → TB, f : B → TC and g : C → TD
with D ∈ N we have
(i) (h ∗ f) ∗ g = h ∗ (f ∗ g).
(ii) (rηB) ∗ f = rf .
(iii) f ∗ ηC = f .
Let T = (T, η, ∗) and T ′ = (T ′, η, ◦) be two clones over N. For each object A
of N let ρA : TA → T ′A be a morphism. Then ρ is a morphism of clones over
N if it preserves η and (f ∗ g)ρC = (fρB) ◦ (gρC) for any f : A → TB and
g : B → TC.

Definition 10 Suppose T is a clone over N. A left T -algebra is a pair X =
(X, ◦) consisting of an object X of C and a function ◦ which assigns to each
ordered pair (A, B) of objects of N a function C(A, TB)×C(B, X) → C(A, X)
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such that for any k : A → C, f : A → TB, g : B → TC and h : C → X with
D ∈ N we have
(i) (f ◦ g) ◦ h = f ◦ (g ◦ h).
(ii) (kηC) ◦ h = kh.
Let X and Y be two T -algebras. A morphism of left T -algebras from X to Y
is a morphism φ : X → Y such that (f ◦m)φ = f ◦ (mφ) for any f : A → TB
and m : B → X.

Definition 11 A clone over N in extension form is a system T = (T, η, ∗−)
consisting of functions
(a) T : ObN → ObC,
(b) η assigns to each object A in N a morphism ηA : A → TA,
(c) ∗− maps each morphism f : B → TC with B, C in N to a morphism
∗f : TB → TC, such that for g : C → TD with D ∈ N

(i) ∗f ∗ g = ∗(f ∗ g).
(ii) ηB ∗ f = f .
(iii) ∗ηC = idTC.
Let T and T ′ be two clones in extension form over N. For each object A of
N let ρA : TA → T ′A be a morphism. Then ρ is a morphism of clones if it
preserves η and ∗fρB = ρA ∗ (fρB) for any f : A → TB with B ∈ N.

Definition 12 Suppose T is a clone in extension form over N. A left T -
algebra is a pair X = (X, ∗−) consisting of an object X of C and a function
∗− which maps each morphism m : A → X (A ∈ N) to a morphism ∗m :
TA → X, such that
(i) (∗g)(∗m) = ∗(g ∗ m) for any g : B → TA with B ∈ N.
(ii) ηX ∗ m = m.
Let X and Y be two left T -algebras. A morphism of left T -algebras from X to
Y is a morphism φ : X → Y such that (∗m)φ = ∗(mφ) for any m : A → X
with A ∈ N.

The class CT of left T -algebras of a clone T in extension form over N is a
concrete category over C with the forgetful functor GT : CT → C. On the
other direction we have a free functor F T : N → CT defined by F T (A) =
(TA, ∗−) and F T (f) = fηA. If N = C then (F T , GT ) is an adjunction.

Proposition 13 (cf. [7]) 1. GT : CT → C creates limits.
2. GT : CT → C creates GT -split coequalizers.
3. F T : N → CT preserves any colimit in N which is also a colimit in C.
4. There is a bijection between morphisms T → T ′ of clones in extension form
on N and functors CT ′

→ CT of concrete categories over C.

Definition 14 Suppose T and T ′ are two clones in extension form over two
full subcategories N and N′ of C respectively.
1. T and T ′ are rational equivalent if XT and XT ′

are equivalent as concrete
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category over C.
2. T and T ′ are Morita equivalent if XT and XT ′

are equivalent as abstract
category.

Lemma 15 Suppose N ⊂ N′ and any object of N′ is a retract of an object
of N. Then any clone over N′ in extension form is rationally equivalent to its
restriction to N.

Lemma 16 (i) Any clone T in extension form over N determines a clone
over N, called the clone of T .
(ii) Any clone T over a dense subcategory N defines a clone in extension form
over N whose clone is T .

Remark 17 Suppose C is a complete category. Let A and N be two objects of
C. Let AAN

be the AN -th power of A. For any ν : N → A let ⋄f : AAN

→ A be

the projection determined by ν. Consider the map ∗− : (AAN

)N → (AAN

)(AA
N

)

defined by (∗α)(⋄ν) = ⋄(α(⋄ν)) for any α : N → AAN

and ν ∈ AN . Let
η : N → AAN

be the map such that η(⋄ν) = ν for any ν : N → A. Then
(AAN

, η, ∗−) is a clone over N in extension form, called a transformation
monad. Note that (A, ⋄−) is an algebra of the clone (AAN

, ∗−). Let D be an ob-
ject. Suppose (A, η, ∗−) is a clone over N in extension form and θ : A → DDN

is a morphism. If (D, (θ⋄)−) is an A-algebra then θ : (A, ∗−) → (DDN

, ∗−)
is a morphism of clones over N . Conversely if θ : (A, ∗−) → (DDN

, ∗−) is a
morphism of clones over N then (D, (θ⋄)−) is an A-algebra. It follows that if
C is complete then an A-algebra can also be defined as an object D together
with a morphism of clones over N from A to DDN

.

Theorem 18 (Cayley’s theorem for clones) Any clone A in extension form
over an object N of a complete category is a subclone of the transformation
clone AAN

over N .

2 Clones in Universal Algebra

In abstract universal algebra one studies clones over the set N of positive
integers. Since N is dense in Set, the notion of clones and clones in extension
form over N are equivalent. Such a clone can be defined in many different ways
(see W. D. Neumann [14], B. M. Schein, V. S. Trohimenko [18], B. Pareigis
and H. Rohrl [15], and Z. Luo [8] [9]). The following two equivalent definitions
stand out as the most convenient definitions to use in practice:

If A is any set denote by AN the set of infinite sequences [a1, a2, ...] of elements
of A. If A, B, C are three sets and α : A×BN → C is a function we often simply
write a[b1, b2, ...] for α(a, [b1, b2, ...]) ∈ C for any a ∈ A and b1, b2, ... ∈ B. We
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shall use these notations in the definitions of clones over N and left or right
algebras of a clone over N.

Definition 19 A clone over N is a triple (A, X, σ) where A is a nonempty
set, X = {x1, x2, ...} is a subset of A, and σ : A × AN → A is a map such
that for any a, a1, a2, ..., b1, b2, ... ∈ A we have
1. (a[a1, a2, ...])[b1, b2, ...] = a[a1[b1.b2, ...], a2[b1, b2, ...], ..].
2. a[x1, x2, ...] = a.
3. xi[a1, a2, ...] = ai for any i ∈ N.

Definition 20 A clone over N is a nonempty set A such that
1. AN is a monoid with a unit x̃ = [x1, x2, ...].
2. A is a right AN-act.
3. xi[a1, a2, ...] = ai for any ã = [a1, a2, ...] ∈ AN and i ∈ N.

Remark 21 According to Definition 19 a clone over N is an algebra with an
N-ary operation α : AN ×A = AN → A and a countably infinite sequence of
constants {x1, x2, ...} satisfying the three axioms. Thus the class of clones over
N forms a (non-finitary) variety.

From now on by a clone we always mean a clone over N. We shall write
[[a1, a2, a3, ..., an]] for [a1, a2, a3, ..., an, an, an, ...] for any a1, a2, ..., an ∈ A. Let
X = {x1, x2, ...}.

The notions of left and right algebras of clones on N defined below were first
introduced in [15].

Definition 22 Let A be a clone. A left algebra of A (or a left A-algebra) is
a set D together with a multiplication A× DN → D such that for any a ∈ A,
[a1, a2, ...] ∈ AN and [d1, d2, ...] ∈ DN

1. (a[a1, a2, ...])[d1, d2, ...] = a([a1[d1, d2, ...], a2[d1, d2, ...], ...].
2. xi[d1, d2, ...] = di.

Example 2.1 1. N is a clone with the monoid N
N. It is the initial clone.

2. Similarly X = {x1, x2, ...} is an initial clone which is isomorphic to N.
3. Let τ = {ni}i∈I be a type of algebras. Let X = {x1, x2, ...} be a set of
variables. The term algebra Tτ (X) defined in universal algebra is a clone. The
category of τ(X)-algebra is equivalent to the category of left Tτ (X)-algebras.

Definition 23 Let A be a clone. A right algebra of A (or a right A-algebra)
is a right act B of monoid AN. Suppose A and B are two clones. An A-B-
algebra is a left A-algebra and right B-algebra B such that (ac̃)b̃ = a(c̃b̃) for
any a ∈ A, c̃ ∈ BN and b̃ ∈ BN.

Example 2.2 A is an A−A-algebra.
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We say an element of b of a right A-algebra B has finite rank n > 0 if
b[[x1, x2, ..., xn]] = b. We say b has rank 0 (or b is closed, or b is a sentence) if
b[[x1]] = b[[x2]] = b. An element b ∈ B has rank n ≥ 0 if and only if the left
translation la : AN → B with ã → bã only depends on the first n components
of ã. Denote by F(B) the set of finitary elements of B. Denote by Fn(B) the
set of elements of B with rank n ≥ 0. B is locally finitary if any element of B
has finite rank. We obtain a sequence of sets:

F0(B) ⊆ F1(B) ⊆ F2(B) ⊆ ...F(B) ⊆ B.

Since A itself is also a right A-algebra, these notions also apply to A. Hence
we have a sequence of subsets of A:

F0(A) ⊆ F1(A) ⊆ F2(A) ⊆ ...F(A) ⊆ A.

Lemma 24 1. F(A) is a locally finitary clone.
2. The category of locally finitary clone is a full coreflectvie subcategory of the
category of clones.
3. Each Fi(A) is a free left A-algebra of rank i ≥ 0.
4. A is a free left A-algebra of countable rank.

Definition 25 The dull Law(A) of the full subcategory F0(A) ⊆ F1(A) ⊆
F2(A) ⊆ ... of the category of left A-algebras is called the Lawvere theory of
A. Note that Law(A) = Law(F(A)).

Lemma 26 Suppose A is a locally finitary clone.
1. If B is a right A-algebra then F(B) is a locally finitary right A-algebra.
2. The category of locally finitary right A-algebras is a full coreflectvie subcat-
egory of right A-algebras.

Theorem 27 1. If A is a locally finitary clone then the class of left A-algebras
is a finitary variety. Conversely any finitary variety arises in this way.
2. The category of locally finitary clone is equivalent to the opposite of the
category of finitary varieties (as concrete categories over Set).
3. The category of locally finitary clone is equivalent to the category of Lawvere
algebraic theories (without terminate object).
4. The category of locally finitary clone is equivalent to the category of finitary
monads in Set.

Definition 28 Let V be a variety of type τ . Let A be a clone. An (A, V )-
algebra is a set B which is a right A-algebra and an algebra in V such that
for any n-ary operation symbol f in τ the operation fB : Bn → B is a homo-
morphism of right A-algebras, or equivalently, each action on B induces an
endomorphism on B. If B = A then we say A is a V -clone. If V is the variety
of all τ -algebras then an (A, V )-algebra or V -clone is called an (A, τ)-algebra
or τ -clone respectively. Denote by Clone the variety of clones. A Clone-clone
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is called a C-clone.

Definition 29 A V -clone (or τ -clone) A is called primary if the algebra A
in V is generated by X.

Lemma 30 1. If A is a primary τ -clone then the class of left A-algebras is
a τ -variety with A as the free algebra over X.

2. The category of primary τ -clones is equivalent to the opposite of the category
of τ -varieties.

Example 2.3 1. Suppose T and D are two left algebras of clones A and B
respectively. Then the set of maps TDN

from DN to T is an A− B-algebra.
2. Suppose D is a left A-algebra and T is an algebra in a variety V , then T DN

is an (A, V )-algebra.

Example 2.4 Suppose B is an algebra in a variety V . Then the basic opera-
tions on B extend to BBN

point-wisely, so BBN

is a V -clone. Denote by Cl(B)
the subalgebra of BBN

generated by the projections π1, π2, ... from BN to B.
One can show by induction that Cl(B) is a subclone of BBN

, thus it is the
smallest sub-V -clone of BBN

. If V is a finitary variety then Cl(B) is a locally
finitary clone, and the Lawvere theory Law(Cl(B)) of Cl(B) determines the
clone of B in the classical sense of P. Hall (cf. [4] p.126). If B is a clone then
Cl(B) ⊆ BBN

are C-clones.

A C-clone can also be defined directly:

Definition 31 A C-clone is an algebra H with two N-ary operations ., ∗ :
H×HN = HN → H and two sequences t1, t2, ..., s1, s2, .... ∈ H such that
1. (H, ., {t1, t2, ...}) and (H, ∗, {s1, s2, ...}) are clones.
2. (au) ∗ v = (a ∗ v)[u1 ∗ v, u2 ∗ v, ...] for any a ∈ H and u, v ∈ HN.
3. ti ∗ u = ti for any u ∈ HN.

The class of C-clones is a variety. Therefore the initial C-clone E exists. It is
the free clone on {s1, s2, ...}. For any C-clone H the unique homomorphism
LH : E → H is not injective in general, which determines a congruence
Cng(H) of E. We say that a C-clone H satisfies a hyperidentity a ≈ b if
< a, b > ∈ Cng(H). We say that a clone A satisfies a hyperidentity a ≈ b if
the C-clone BBN

(or Cl(A)) satisfies the hyperidentity. We say that a variety
V satisfies a hyperidentity a ≈ b if the clone determined by the free algebra
of V on {t1, t2, ...} satisfies the hyperidentity. Thus we may speak of the hy-
peridentities satisfied by groups, rings, etc. The theory of hyperidentities are
important for the study of classification of finitary varieties. A hypervariety
is the totality of locally finitary clones satisfying a set of hyperidentities. A
class of locally finitary clones is a hypervariety if and only if it is closed under
subclones, homomorphic images and direct products of clones (cf. [5]).
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Example 2.5 (Post) Let n be any positive integer > 1 viewed as a finite
set with n elements. Then F(nnN

) is a locally finitary clone. The category
of left F(nnN

)-algebras is equivalent to the category of boolean algebras. In
particular, the category of left F(22N

)-algebras is equivalent to the category
of boolean algebras. Note that F(22N

) is naturally a free boolean algebra of
countable rank.

Example 2.6 Let F = {0, 1, 2, 3, ...} and F
′ = {1, 2, 3, ...} be the full subcate-

gories of Set. Then the category of locally finitary right X-algebras is equiva-
lent to the category of presheaves in SetF′

. Since each presheaf in SetF′

is the
normalization of a presheaf in SetF at 0, one may replace presheaves in SetF

by locally finitary right X-algebras (or more generally, by any right algebra of
a clone) in the definition of binding algebras over variable sets given in [6].

Definition 32 A type is a right X-algebra.

Denote by Type (resp. FType) the category of types (resp. locally finitary
types). Then FType is a full coreflective subcategory of Type.

Suppose D and E are two locally finitary types. Then EN is a bi-act of N
N.

The tensor product D ⊗ EN is the quotient of the product type D × EN

modulo the congruence generated by the relations (d[y1, y2, ...], [e1, e2, ...]) ≈
(d, [y1, y2, ...][e1, e2, ...]) for all d ∈ D, e1, e2, ... ∈ E and y1, y2, ... ∈ X. Then
D⊗EN is a locally finitary type. One can show that (FType,⊗, X) is a strict
monoidal category with the unit N.

Any locally finitary type D determines a finitary endofunctor ηD : Set →
Set : E → D ⊗ E (here each set E is viewed as a type with trivial actions).
Conversely, if F : Set → Set is any finitary endofunctor then F (N) is naturally
a locally finitary type.

Theorem 33 1. The category of strict monoidal category of locally finitary
types is equivalent to the strict monoidal category of finitary endofunctors of
Set with compositions as multiplications.

2. The category of locally finitary clones is equivalent to the category of monoids
in the monoidal category (FType,⊗, X).

Example 2.7 If A is a clone and Y is any set then A⊗ Y is naturally a left
A-algebra which is the free left A-algebra over Y .

Theorem 34 If A is any clone denote by E(AN) the set ẽ of idempotents of
AN such that ẽ = [[x1, x2, ..., xn]]ẽ[[x1, x2, ..., xn]] for some n > 0, which is
viewed as a subcategory of Karoubi envelope of AN (cf. [3] p.114). Then two
locally finitary clones A and B are Morita equivalent iff the categories E(A)
and E(B) are equivalent (cf. [2]) (note that bi-algebras of clones can also be
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used to characterize Morita equivalent clones) .

Suppose A is a clone. Let n > 0 be a positive integer. If u = (a1, ..., an), v =
(b1, ..., bn) ∈ An we write u + v for the join (a1, ..., an, b1, ..., bn). The n-th
metrix power of A is the clone A[n] with An as the universe such that the new
multiplication An×(An)N → An is defined by u[v1, v2, ...](i) = u(i)[v1+v2+...]
for all u, v1, v2, ... ∈ An and i ≤ n. The unit of A[n] is

[(x1, ..., xn), (xn+1, ..., x2n), (x2n+1, ..., x3n), ...)].

Using the above theorem one can show that A and An are Morita equivalent
for locally finitary A.

There is yet another standard method to obtain Morita equivalent clones,
called modification. Call an element a ∈ A a varietal generator (of rank 1) if
a = a[[x1]] = a[[a]] and [[x1]] = c̃([[a]][[xn]])d̃ for some ã, d̃ ∈ AN and n > 0.
If a is a varietal generator then aAN is a clone with [a[[x1]], a[[x2]], ...] as the
unit. Using the above theorem again one can show that A and aAN are Morita
equivalent.

Theorem 35 A locally finitary clone B is Morita equivalent to a locally fini-
tary clone A iff B ∼= a(A[n])N for a varietal generator a of A[n] for some n > 0
(cf. [12]).

There are many other interesting aspects of clone theory. Since Lawvere the-
ories, finitary varieties and finitary monads over Set are essentially locally
finitary clones over N, any notion applies to Lawvere theories, finitary vari-
eties and finitary monads over Set can be transformed into a purely algebraic
notion for locally finitary clones (or their left or right algebras). Furthermore,
if a notion does not specifically refer to the finiteness condition then it can
also be extended to arbitrary clones. Here are some examples: tensor product
of clones, commutative clone, Morita theory for clones, Malcev clone, arith-
metical clone, minimal clone, discriminator clone, spectrum of a clone, Post
algebra, cylindric algebra or polyadic algebra with terms in a clone, Fiore-
Plotkin-Turi substitution algebra, and operads, etc.

3 Algebraic Theories

Definition 36 1. An algebraic theory is a category (T, T N) of two objects such
that T N together with a map x : N → hom(T N, T ) is the N-th power of T .
2. Suppose (T, T N) and (H, HN) are two algebraic theories. A functor F :
(T, T N) → (H, HN) is called a morphism of algebraic theories if F sends T to
H, T N to HN and F (x(i)) = x(i) for any i ∈ N.
3. A left model of an algebraic theory (T, T N) is a functor (T, T N) → Set

15



preserving the N-th power of T . A homomorphism of left models of (T, T N) is
a natural transformation.
4. A right model of (T, T N) is a functor (T, T N)op → Set. A homomorphism
of right models of (T, T N) is a natural transformation.

Remark 37 1. Any clone A determines an algebraic theory (A,AN), which
is the full subcategory of right acts of AN generated by the two right acts A
and AN. The algebraic theory (A,AN) is called a matrix algebraic theory.
2. Any algebraic theory (T, T N) determines a clone hom(T N, T ) with the
monoid hom(T N, T )N = hom(T N, T N) and the unit x : N → hom(T N, T ).
3. These processes are inverse to each other. Thus the notion of clones (over
N) is equivalent to the notion of algebraic theories. More precisely, we have
the following

Lemma 38 1. Any algebraic theory (T, T N) is isomorphic to the matrix alge-
braic theory (hom(T N, T ), hom(T N, T )N).
2. The category of clones (over N) is equivalent to the category of algebraic
theories.

Example 3.1 Let V be a variety. Let F (1) and F (N) be the free algebras
of rank 1 and N respectively. Then F (N) is the N-th sum of F (1). Thus the
dual of the subcategory (F (1), F (N)) of V is an algebraic theory, and F (N) =
hom(F (1), F (N)) is a clone, called the clone of V . For instance, if S is any set
then (S, N × S)op is an algebraic theory. Thus (N × S)S is a clone.

4 Binding Operations

Suppose A is a clone and B is a right A-algebra. Denote by x̃ = [x1, x2, ...]
the unit of the monoid AN.

If a ∈ A and b̃ ∈ BN we let
[+] = [x2, x3, x4, x5, ...] ∈ AN.
[−] = [x1, x1, x2, x3, x4, x5, ...] ∈ AN.
[+i] = [x1, x2, ..., xi−1, xi+1, ...] ∈ AN.
[−i] = [x1, x2, ..., xi−1, xi, xi, xi+1, ...] ∈ AN.
a+ = a[+], a− = a[−], a+i = a[+i], a−i = a[−i], b̃+i = b̃[+i], b̃−i = b̃[−i].

In the following we assume y, z, w, ... ∈ {x1, x2, ...}, which are called syntactical
variables. If a, b ∈ B let a[b/xi] = a[x1, x2, ..., xi−1, b, xi+1, ...]. We say a ∈ B is
independent of a syntactical variable y if a = a[y+/y]; otherwise we say that a
depends on y. Denote by FV (a) the set of variables on which a depends. If a
has rank n ≥ 0 then FV (a) ⊆ {x1, x2, ..., xn}. If a is closed then FV (a) = ∅.
If a is finitary and FV (a) = ∅ then a is closed.
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Definition 39 A map λ : B → B is called an abstract binding operation on
xi if

(λb)ã = λ(b[a+i
1 , a+i

2 , ..., a+i
i−1, xi, a

+i
i , ...])

for any b ∈ B and ã ∈ AN.

Definition 40 An operation λ : B → B is called binding on xi if

(λb)ã = (λ(b[a+i
1 , a+i

2 , ..., a+i
i−1, xi, a

+i
i+1, ...]))

[−i]

for any b ∈ B and ã ∈ AN.

Lemma 41 1. If λ : B → B is an abstract binding operation on xi then the
operation λ+i : B → B sending b to (λb)+i is binding on xi.
2. If λ : B → B is binding on xi then the map λ−i : B → B sending b to
(λb)−i is an abstract binding operation on xi.
3. The set of abstract binding operations on xi and the set of binding operations
on xi for B are bijective.

Remark 42 1. A map λ : B → B is an abstract binding operation on x1 if
and only if (λb)ã = (λ(b[x1, a

+
1 , a+

2 , ...])).
2. A map λ : B → B is binding on x1 if and only if (λb)ã = (λ(b[x1, a

+
2 , a+

3 , ...]))−.

Definition 43 Let λ : B → B be an abstract binding operation on x1. For
any variable y = xi we introduce a new map λy : B → B by

λy.b = λ(b+[x1/y
+]) = λ(b[x2, x3, ..., y

−, y, x1, y
++, ....])

= λxi.b = λ(b+[x1/x
+
i ]) = λ(b[x2, x3, ..., xi, x1, xi+2, ....]).

Lemma 44 If j ≤ i then λxi.b = (λxj .(b
+j [xj/x

+
i ]))−j.

If i < j then λxi.b = (λxj .(b
+j [xj/xi]))

−j.

Suppose λ : B → B is an abstract binding operation on x1 and b ∈ B.

Lemma 45 1. λx1.b = λ(b[x1, x3, x4, ...]) = (λb)+.
2. λb = (λx1.b)

−.
3. (λx1.b)ã = (λx1.(b[x1, a

+
2 , a+

3 , ...]))−

4. λx1.b = (λx1.(b[x1, x3, x4, ...]))
−.

5. λxi.b = (λx1.(b[x2, x3, ..., xi−1, xi, x1, xi+2, ..]))
−.

6. λy.b = (λx1.(b[x2, x3, ..., y
−, y, x1, y

++, ..]))−.
7. (λxi.b)[u1, u2, ...] = λ(b[u+

1 , u+
2 , ..., u+

i−1, x1, u
+
i+1, u

+
i+2, ...]).

8. λy is binding on y.
9. λ(Fn(B)) ⊂ Fn−1(B) for any n > 0.
10. λ(F0(B)) ⊂ F0(B).
11. If a ∈ B has finite rank i > 0 then λia is closed.

Lemma 46 1. If b is independent of y then λz.b = λy.(b[y/z]).
2. If b is independent of y then λy.b = λ(b+).
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3. If y 6= z and a ∈ A is independent of z then (λz.b)[a/y] = λz.(b[a/y]).
4. If b is independent of x2 then (λx1.b)

− = λx1.(b
−).

5. If a2, a3, ... are independent of x1 then (λx1.b)ã = (λx1.(b[x1, a
+
2 , a+

3 , ...]))− =
λx1(b[x1, a2, a3, ...]).

Remark 47 We have
(λx1.x1)

− = λx1.x1 = λx1 (closed),
(λx1.x2)

− = λxi.x1 = λx2 (rank 1) for i > 2.
(λx1.x3)

− = λx1.x2 = λx3 (rank 2),
(λx1.x4)

− = λx1.x3 = λx4 (rank 3),
...
The irregularity for (λx1.x2)

− is due to the fact that the substitution [x1, x1, x3, ...]
replaces x2 by x1, while in λx1.x2 the variable x2 is bound by x1.

5 Clones in Lambda Calculus.

Suppose A is a clone. Let B be a right A-algebra, i.e. B is a right act of
the monoid AN. We define a new right A-algebra BA = (B, ∗) with the new
action ∗ : B ×AN → B: b ∗ [a1, a2, ....] = b[x1, a

+
1 , a+

2 , ...]. A map λ : BA → B
is a homomorphism of right A-algebras if and only if (λb)ã = λ(b ∗ ã) =
λ(b[x1, a

+
1 , a+

2 , ...]) for any ã ∈ AN. Thus λ : B → B is a homomorphism
BA → B if and only if it is an abstract binding operation on x1. Let evA,B :
BA ×A → B be the homomorphism of right A-algebras defined by ev(b, a) =
b[a, x1, x2, ...] for any b ∈ B and a ∈ A. The right A-algebra BA together
with the homomorphism evA,B : BA×A → B is the exponent in the category
of right A-algebras. Specifically, this means that, for any f : T × A → B of
homomorphism of right A-algebras, there is a unique Λf : T → BA (called the
curred version of f) given by (Λf)t = f(t+, x1) such that f = ev ◦ (Λf × idA),
as we have ev◦(Λf×idA)(t, a) = evA,B(f(t+, x1), a) = f(t+, x1)[a, x1, x2, ...] =
f(t+[a, x1, x2, ..], x1[a, x1, x2, ...]) = f(t, a).

The most important property about a clone is that it is a Kleisli algebra, i.e.
a monad over a category with only one object. Algebraically a Kleisli algebra
is a set S together with two monoid structures (S, .) and (S, ◦) such that
a(b ◦ c) = (ab) ◦ c for any a, b, c ∈ S (cf [11] p. 110. ex.18 and p.136. ex 5).
Suppose A is a clone. AN carries another monoid structure with the binary
operation ◦ in AN defined by

ã ◦ b̃ = ã[x1, b1, b2, ...] = [a1[x1, b1, b2, ...], a2[x1, b1, b2, ...], ...],

whose unit is [+] = [x2, x3, ...]. Denote by (AN, ◦) this new monoid. There are
three basic homomorphisms of monoids:

∆1 : AN → (AN, ◦) [a1, a2, ...] → [a+
1 , a+

2 , ...],
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∆2 : (AN, ◦) → AN [a1, a2, ...] → [x1, a1, a2, ...].
∆ = ∆2∆1 : AN → AN [a1, a2, ...] → [x1, a

+
1 , a+

2 , ...].

Then ∆1 is a left adjoint of ∆2, which induces a monad (∆, [+], [x1, x1, x2, ...])
on the one object category AN. We have ã(b̃◦ c̃) = (ãb̃)◦ c̃ for ã, b̃, c̃ ∈ AN. Thus
(A, ., ◦) is a Kleisli algebra. Denote by Rg(A) the category of right A-algebras.
Let δ : Rg(A) → Rg(A) be the functor induced by the homomorphism ∆ :
AN → AN. Then for any right A-algebra B we have δ(B) = BA.

Example 5.1 The submonoid of N
N generated by [+] and [−] is the initial

Kleisli Algebra.

Let C be a cartesian closed category. An object U ∈ C is reflexive if the
exponent UU is a retract of U , i.e. there are maps F : U → UU and G : UU →
U such that FG = idUU .

Definition 48 1. A reflexive clone is a clone A together with two homomor-
phisms λ : AA → A and λ∗ : A → AA such that λ∗λ = idAA .
2. An extensional clone is a clone A together with a bijective homomorphism
(i.e. an isomorphism) from A to AA (cf [3]).

Definition 49 (Elementary Definition) A reflexive clone (resp. extensional
clone) is a clone A together with two maps λ, λ∗ : A → A such that
1. λ∗(aã) = (λ∗a)[x1, a

+
1 , a+

2 , ...].
2. (λa)ã = λ(a[x1, a

+
1 , a+

2 , ...]) (resp. λλ∗ = idA).
3. λ∗λ = idA.

Lemma 50 1. If A is a reflexive clone then F(A) is a locally finitary reflexive
clone.
2. The category of locally finitary reflexive clones is a coreflective subcategory
of the category of reflexive clones.
3. The initial reflexive clone is locally finitary. The same is true for extensional
clones.

Theorem 51 Any reflexive object U in a cartesian closed category determines
a reflexive clone.

PROOF. 1. First assume the N-th power UN of U exists. Let A = hom(UN, U).
Since UU is a retract of U and U is a retract of UN, UN is dense in the sub-
category (UU , U, UN) of C. Thus (UU , U, UN) is equivalent to the category
(AA,A,AN) of right acts of AN. Thus A is a reflexive right act.
2. If UN dose not exist then one can embed the Lawvere theory (U0, U, U2, U3, ...)
in the opposite of the category of its models. Then U is reflexive and the N-th
power UN of U exists. Applying step 1 we obtain a reflexive clone.
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Suppose λ∗ : A → AA is a homomorphism. We have λ∗a1 = λ∗(x1ã) =
(λ∗x1)[x1, a

+
1 , a+

2 , ...] = (λ∗x1)[[x1, a
+
1 ]]. Thus λ∗a = (λ∗x1)[[x1, a

+]] and λ∗(x1) ∈
F2(A). Define a homomorphism A × A → A of right A-algebras by ab =
(λ∗x1)[[b, a]]. Then λ∗a = a+x1. Conversely if f : A×A → A is a homomor-
phism of right A-modules then the map λ∗ : A → A defined by a → a+x1 is
a homomorphism from A to AA.

Lemma 52 The following three sets are bijective:
1. hom(A,AA).
2. The set of homomorphisms A×A → A of right A-algebras.
3. F2(A).

Definition 53 A λ-clone is a clone with the following homomorphism of right
A-algebras:
(i) λ : AA → A.
(ii) An application . : A × A → A (or equivalently, a homomorphism λ∗ :
A → AA).
A λβ-clone is a λ-clone satisfying the following axiom for any a ∈ A
(a) (λa)+x1 = a (or equivalently, λ∗λ = idA) (β-conversion).
A λβη-clone is a λβ-clone satisfying the following axiom for any a ∈ A
(b) λ(a+x1) = a (or equivalently, λλ∗ = idA) (η-conversion).

The category of reflexive clones (resp. extensional clones) is equivalent to the
category of λβ-clones (resp. λβη-clones). The classes of λ-clones, λβ-clones,
and λβη-clones are varieties in the sense of universal algebra. Traditionally the
initial λ-clone Λ is defined by λ-terms:

Definition 54 (λ-terms) The class Λ of λ-terms is the least class satisfying
the following
1. xi ∈ Λ for any i ∈ N.
2. if a ∈ Λ then (λa) ∈ Λ
3. if a, b ∈ Λ then (ab) ∈ Λ

We define a multiplication Λ × ΛN → Λ inductively:
1. xi[a1, a2, ...] = ai.
2. (ab)[a1, a2, ...] = (a[a1, a2, ...])(b[a1, a2, ...]).
3. (λa)[a1, a2, ...] = λ(a[x1, a

+
1 , a+

2 , ...]).
One can prove by induction that a[x1, x2, ...] = a, and the following lemma

Lemma 55 Substitution Lemma. (aã)b̃ = a[a1b̃, a2b̃, ...].

It is easy to see that Λ is a λ-clone. Clearly it is the initial λ-clone.

Definition 56 1. Let Λβ be the quotient of the λ-clone Λ by the congruence
generated by all the pairs {< a, (λa)+x1 >}a∈Λ. Λβ is the initial λβ-clone.
2. Let Λβη be the quotient of the λ-clone Λ by the congruence generated by
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all the pairs {< a, (λa)+x1 >}a∈Λ and {< a, λ(a+x1) >}a∈Λ. Then Λβη is the
initial λβ,η-clone.
(Note that it follows from Church-Rosser theorem that Λβ and Λβη are not
trivial (i.e. they contains more than one elements) [3]).

Definition 57 1. A left Λ-algebra is simply called a Λ-algebra.
2. A left Λβ-algebra is called a λ-algebra.
3. A left Λβη-algebra is called an extensional λ-algebra.
4. A left Λβ-algebra D is called a λ-model if the following axiom is satisfied:
if a, b ∈ A and am̃ = bm̃ for every m̃ ∈ DN then λa = λb.

Since Λ is finitary with Λβ and Λβη as quotients, these two classes are also
finitary. Hence the classes of Λ-algebras (resp. λ-algebras, resp. extensional
λ-algebras) are finitary varieties. Note that in a λ-clone we have the derived
unary operations (λx1), (λx2), (λx3), ... Thus the classical λ-terms can be in-
terpreted in any λ-clone. In fact, the initial λ-clone Λ is precisely the quotient
of classical λ-terms modulo α-conversion.

Lemma 58 Suppose a, b ∈ Λ.
1. FV (x) = {x}.
2. FV (λx.a) = FV (a) − {x}.
3. FV (ab) = FV (a) ∪ FV (b).

Example 5.2 Suppose A is a λ-clone.
1. λy.y = λ((y+)[x1/y

+]) = λx1.
2. λy.y = λz.z for any variables y and z.
3. If A is a λβ-clone then (λy.y)b = b for any b ∈ A.
4. If i > 0 then λxi has a rank i − 1, and λixi is closed.

Remark 59 If A is a λβ-clone then (λy.a)b = a[b/y]. By induction one can
see that this rule is sufficient for the calculations in Λ(A) using the derived
binding operations {λy} and simple substitutions {[b/y]}.

A λ-clone can also be defined directly without referring to the unary map λ:

Definition 60 (Alternate Definition) A λ-clone is a clone with the following
maps:
(i) λx1 : A → A such that (λx1.a)[a1, a2, ...] = (λx1.(a[x1, a

+
2 , a+

3 , ...]))−.
(ii) . : A× A → A is a homomorphism of right A-algebras (called the appli-
cation).
A λβ-clone is a λ-clone satisfying the following axiom for any a ∈ A
(a) (λx1.a)x1 = a (β-conversion).
A λβη-clone is a λβ-clone satisfying the following axiom for any a ∈ A
(b) λx1.(a

+x1) = a+ (η-conversion).
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6 Clones in Predicate Logic

In this section we present an ad hoc approach to first-order logic to show how
to eliminate the problems related to the complicated notion of variable sub-
stitutions encountered in most traditional approaches. We choose E. Mendel-
son [13] as our main reference. All definitions are given in traditional fashion.
Although a few properties are stated in terms of clones, it is straightforward
to replace them by checking the properties directly. Historically A. Tarski [19]
seems to be the first to address these problems.

Let τp = {F,⇒} be a type of algebras, where F is a 0-ary operation and ⇒ is a
binary operation. Any τp-algebra is called a proposition algebra. For instance,
2 = {0, 1} is a proposition algebra with F = 0 and (0 ⇒ 0) = (0 ⇒ 1) = (1 ⇒
1) = 1, (1 ⇒ 0) = 0. If P is a proposition algebra we introduce some further
operations: ¬p = (p ⇒ F), T = ¬F, p ∨ q = (¬p) ⇒ q, p ∧ q = ¬(p ⇒ ¬q),
p ⇔ q = (p ⇒ q) ∧ (q ⇒ p).

Definition 61 A first-order language L consisting of
(i) The set of individual variables {x1, x2, ...}.
(ii) The set {Fn}n∈N of function symbols.
(iii) The set {Rn}n∈N of predicate symbols. We assume R2 contains an element
≈ ∈ R2, called the identity.
(iv) The set of logic symbols ⇒, F, and ∀.

Let T (L) be the set of terms which is defined inductively as the smallest set
such that
(i) {x1, x2, ...} ⊂ T (L).
(ii) if t1, t2, ..., tn are terms and f ∈ Fn then f(t1, t2, ..., tn) is a term.

Let Fa(L) be the set of expressions (called atomic formulas) r(t1, t2, ..., tn)
where r ∈ Rn and t1, t2, ..., tn ∈ T (L) (thus ≈ (t1, t2) ∈ Fa(L), which will be
denoted as t1 ≈ t2).

Let F (L) be the set which is defined inductively as the smallest set such that
(i) Fa(L) ⊂ F (L).
(ii) F ∈ F (L).
(iii) if p, q ∈ F (L) then p ⇒ q ∈ F (L).
(iv) If p ∈ F (L) then ∀p ∈ F (L).
An element in F (L) is called a formula of L.

We define a multiplication T (L) × T (L)N → T (L) inductively:
a. xi[t1, t2, ...] = ti for any t1, t2, ... ∈ T (L).
b. f(s1, s2, ..., sn)[t1, t2, ...] = f(s1[t1, t2, ...], s2[t1, t2, ...], ..., sn[t1, t2, ...]).
T (L) is a clone with the unit [x1, x2, ...].
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Next we define a multiplication F (L) × T (L)N → F (L) inductively:
(i) r(p1, p2, ..., pn)[t1, t2, ...] = r(p1[t1, t2, ...], p2[t1, t2, ...], ...).
(ii) F[t1, t2, ...] = F.
(iii) (p ⇒ q)[t1, t2, ...] = (p[t1, t2, ...]) ⇒ p[t1, t2, ...]).
(iv) (∀p)[t1, t2, ...] = ∀(p[x1, t

+
1 , t+2 , ...], where t+i = ti[x2, x3, ...].

Then F (L) is a right T (L)N-act. So F (L) is a locally finitary right T (L)-
algebra.

Definition 62 Let L be a first order language. An interpretation (or a model)
M of L consists of the following ingredients:
(i) A non-empty set D, called the domain of the interpretation.
(ii) For each function symbol f ∈ Fn an assignment of an n-place operation
fM in D, i.e. a function from Dn to D.
(iii) For each predicate symbol r ∈ Rn an assignment of an n-place relation
rM in D, i.e. a subset of Dn. We assume ≈M= {(d, d)|d ∈ D}.

Suppose M is an interpretation of L.
We first define a multiplication T (L) × DN → D inductively:
a. xi[d1, d2, ...] = di for any d1, d2, ... ∈ DN.
b. f(t1, t2, ..., tn)[d1, d2, ...] = fM(t1[d1, d2, ...], t2[d1, d2, ...], ..., tn[d1, d2, ...]).
Then D is a left T (L)-algebra.

Let 2 = {0, 1}. We define a multiplication F (L) × DN → 2 inductively:
a. r(t1, t2, ..., tn)d̃ = 1 if and only if (t1d̃, t2d̃, ..., tnd̃) ∈ rM for any d̃ ∈ DN

b. Fd̃ = 0.
c. (p ⇒ q)d̃ = 1 if and only if pd̃ = 0 or qd̃ = 1.
d. (∀p)[d1, d2, ...] = 1 if and only if p(d, d1, d2, ...) = 1 for any d ∈ D.

Definition 63 Let M be an interpretation of L.
1. A sequence (d1, d2, ...) in DN satisfies a formula p iff p[d1, d2, ...] = 1.
2. A formula p is true for the interpretation M (written |=M p) iff every
sequence in DN satisfies p.
3. p is said to be false for M iff no sequence in DN satisfies p.
4. M is said to be a model for a set Γ of formulas if and only if every p in Γ
is true for M .

Definition 64 1. A formula p is said to be logically valid iff p is true for
every interpretation of L.
2. p is said to be logically imply q iff in every interpretation, every sequence
that satisfies p also satisfies q.
3. p is said to be a logical consequence of a set Γ of formulas iff for every
interpretation, every sequence that satisfies every formula in Γ also satisfies
p.

If p ∈ F (L) and a ∈ T (L) let p[a/xi] = p[x1, x2, ..., xi−1, a, xi+1, ...]. In the
following we assume y, z, w, ... ∈ {x1, x2, ...}, which are called (syntactical)
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variables. We say a variable y is free for p ∈ F (L) if a 6= a[y+/y]; otherwise
we say that p is independent of y. Denote by FV (p) the set of free variables
of p, which is always a finite set. If FV (p) = ∅ the we say that p is a sentence
(or that p is closed, or p has rank 0). We say a formula p has a rank n > 0 if
p[[x1, x2, .., xn]] = p. If p has hank n ≥ 0 then FV (p) ⊆ {x1, x2, ..., xn}.

Suppose L is any first-order language. We introduce some further operations:
y ≈ z =≈ [y, z, x3, x4, ...], ∃p = ¬∀¬p.

For any variable xi we derive two maps ∀xi, ∃xi : P → P by

∀xi.p = ∀(p[x2, x3, ..., xi−1, xi, x1, xi+2, ...]

∃xi.p = ∃(p[x2, x3, ..., xi−1, xi, x1, xi+2, ...]

Note that ∀x1.p = (∀p)[x2, x3, ...]. So we have ∀p = (∀x1.p)[x1, x1, x2, ....], and

∀xi.p = (∀x1.(p[x2, x3, ..., xi−1, xi, x1, xi+2, ...]))[x1, x1, x2, ...].

hence ∀ and ∀x1 determines each other, and each ∀xi can be derived from
∀x1.

Example 6.1 Suppose M is an interpretation for L. For any formula p we
have (∀xi.p)d̃ = ∀(p[x2, x3, ..., xi, x1, xi+2, ...])d̃ = 1 for any sequence d̃ if and
only if

(p[x2, x3, ..., xi, x1, xi+2, ...])[d, d1, d2, ...] = p([d1, d2, ..., di−1, d, di+1, ...] = 1

for all d ∈ D, which is the classical definition for ∀xi.p.

Lemma 65 1. If p has rank n > 0 then ∀p has rank n − 1.
2. If p is a sentence then ∀p and ∀xi.p are sentences.
3. If p has rank n > 0 then ∀np is a sentence.
4. ∀xi.p is independent of xi.
5. If p is independent of y then ∀z.b = ∀y.(b[y/z]).
6.. If p is independent of y then ∀y.b = ∀(b+).
7. If y 6= z and a ∈ T (L) is independent of z then (∀z.b)[a/y] = ∀z.(b[a/y]).

Now it is easy to translate the classical treatment of first order theory into
our setting and prove all the fundamental theorems of first order theory.

7 Predicate Algebras

Definition 66 Let A be a clone. A predictive algebra with terms in A is a
right A-algebra P together with three homomorphisms of right A-algebras:
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1. ⇒: P 2 → P .
2. F : P 0 → P (i.e. F is an element of P of rank 0.)
3. ∀ : PA → P .
We also assume that P has identity, which is an element ≈ ∈ P of rank 2.

Thus a predicate algebra with terms in A is an (A, τp)-algebra with a homo-
morphism ∀ : PA → P and an element ≈ ∈ P of rank 2. Any proposition
algebra may be viewed trivially as a predicate algebra with terms in A such
that all elements are closed and ≈= T.

Example 7.1 Let D be a left A-algebra. Since 2 = {0, 1} is a proposition alge-
bra, 2DN

is an (A, τp)-algebra. For p ∈ 2DN

let ∀p ∈ 2DN

such that ∀p[d1, d2, ...] =

1 if and only if p[d, d1, d2, ...] = 1 for all d ∈ D. Define ≈ ∈ 2DN

such that
≈ [d1, d2, ...] = 1 if and only if d1 = d2. Then 2DN

is a predicate algebra with
terms in A, called the predicate set algebra for D.

Example 7.2 Let B be a right A-algebra. Let PB be the set which is defined
inductively as the smallest set such that (a) B ⊂ PB. (b) F ∈ PB. (c) if
p, q ∈ PB then p ⇒ q ∈ PB and ∀p ∈ PB. Then PB is a predicate algebra
with terms in A, called the free predicate algebra over B. In particular, if S is
any set then S × A is the free right A-algebra over S, and PS×A is the free
predicate algebra over S. Note that if B is locally finitary then so is PB.

Example 7.3 The initial predicate algebra with terms in a clone A is a locally
finitary predicate algebra Eq(A), called the equational logic for A.

Let P be a predicate algebra with terms in A. For any variable xi we introduce
a new map ∀xi : P → P by ∀xi.p = ∀(p[x2, x3, ..., xi−1, xi, x1, xi+2, ...]. Note
that ∀x1.p = (∀p)+. So we have ∀p = (∀x1.p)−, and

∀xi.p = (∀x1.(p[x2, x3, ..., xi−1, xi, x1, xi+2, ...])
−.

Since ∀ and ∀xi can be derived from ∀x1, a predicate algebra can also be
defined using ∀x1 (instead of ∀) as the basic operation. Let ∃p = ¬∀¬p and
∃xi.p = ¬∀xi.¬p.

Example 7.4 Suppose D is a left A-algebra. For any p ∈ 2DN

and any xi we
have (∀xi.p)d̃ = ∀(p[x2, x3, ..., xi, x1, xi+2, ...])d̃ = 1 for any d̃ ∈ DN if and only
if p[x2, x3, ..., xi, x1, xi+2, ...][d, d1, d2, ...] = p([d1, d2, ..., di−1, d, di+1, ...]) = 1 for
all d ∈ D.

An interpretation of P (or a P-structure, or a model of P ) is a pair (D, µ)
consisting of a left A-algebra D and a homomorphism µ : P → P (DN) of
predicate algebras. We say p ∈ P is logical valid (written |= p) if for any
interpretation (D, µ) we have µ(p) = T. If p, q ∈ P then we say that p and q
are logically equivalent (written p ≡ q) if p ⇔ q is logically valid. The relation
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≡ is a congruence relation on P . The set of congruence classes of P with
respect to ≡ is a predictive algebra called the Lindenbaum-Tarski algebra of
P , denote by LT (P ).

Definition 67 A predicate algebra with terms in a clone A is called a quan-
tifier algebra with terms in A if p ≡ q implies that p = q, i.e. P = LT (P ).

Any predicate set algebra is a quantifier algebra. By definition the class of
quantifier algebras is the variety generated by all predicate set algebras. A
quantifier algebra is a Boolean algebra with respect to the operations ∨,∧,¬
such that each a ∈ A induces an endomorphism of this Boolean algebra.
We also have existential quantifiers (∃x1), (∃x2), ...,. These data determined a
polyadic algebra with terms in A.

Theorem 68 (cf. [16]) A locally finitary predicate algebra P with terms in
a clone A is a quantifier algebra if and only if the following conditions are
satisfied for all a, b ∈ P and variables y, z:
1. P is a Boolean algebra with respect to ∨,∧,¬, F, T.
2. ∃(a ∨ b) = ∃a ∨ ∃b.
3. a ≤ (∃a)+.
4. x1 ≈ x1 = T.
5. a ∧ (y ≈ z) ≤ a[z/y], where a[z/y] = a[x1, x2, ..., y

−, z, y+, ...].

Example 7.5 Let L be a first-order language. Then
1. T (L) is a locally finitary clone.
2. F (L) is a locally finitary predicate algebra with terms in T (L).
3. If M is an interpretation of L then the multiplication T (L)×DN → D turns
D into a left T (L)-algebra, and the multiplication F (L) × DN → 2 induces a
homomorphism of predicate algebras F (L) → 2DN

.
4. Conversely if D is a left T (L)-algebra then any homomorphism µ : F (L) →
2DN

induces an interpretation M for L such that fM = f(x1, x2, ..., xn) ∈ D
for any f ∈ Fn and for any r ∈ Rn we have (d1, d2, ..., dN) ∈ rM iff

µ(r(x1, x2, ..., xn))(d1, d2, ..., dn) = 1.
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