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Abstract

Algebraic logic studies algebraic theories related to proposition and first-order
logic. A new algebraic approach to first-order logic is sketched in this paper. We
introduce the notion of a quantifier theory, which is a functor from the category
of a monad of sets to the category of Boolean algebras, together with a uniquely
determined system of quantifiers. A striking feature of this approach is that Cay-
ley’s Completeness Theorem and Godel’s Completeness Theorem can be stated and
proved in a much simpler fashion for quantifier theories. Both theorems are due to
Halmos for polyadic algebras. We also present a simple transparent treatment of
ultraproducts of models of a quantifier theory.
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Introduction

Algebraic logic studies algebraic theories related to proposition and first-order
logic. A new algebraic approach to first-order logic is sketched in this paper. We
introduce the notion of a quantifier theory and prove Cayley’s Completeness
Theorem and Goédel’s Completeness Theorem for quantifier theories. Both
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theorems are due to Halmos for polyadic algebras. We also present a simple
transparent treatment of ultraproducts of models of a quantifier theory. This
approach to algebraic logic is based on the theory of clones (see [13]-[16]).

It is well known that Boolean algebras algebrazies proposition logic, and
polyadic algebras algebraizes first-order logic. In literature polyadic algebras
are usually defined as a substitution Boolean algebra over a fized set of vari-
ables without terms (cf. [10]). In order to prove Godel’s completeness theorem
for polyadic algebras one needs to add constants to a polyadic algebra as new
closed terms. Halmos’s original approach to the theory of constants and terms
for polyadic algebra are quite involved. To overcome these conceptual difficul-
ties we introduce the notion of a quantifier theory, which is a functor from
the Kleisli category of a monad of sets to the categories of Boolean algebras,
equipped with a binding system of quantifiers. This is a very natural approach
to first-order logic as the semantic or syntax of quantifier logic provide con-
crete or abstract quantifier theories respectively (see Section 2 and the last
part of this introduction).

By a Boolean algebra B we mean a complemented distributive lattice, which
may be viewed as an algebra (B, A, v,—,0,1) with two binary operations
A, Vv, a unary operation —, and two distinguished elements 0, 1. Alternatively,
a Boolean algebra is an algebra (B, A, —) such that (B, A) is a commutative
semigroup and p A (—q) = r A (=r) iff p A ¢ = p for any p,q,r € B (cf. [1]
[21]). A Boolean algebra is nontrivial if it has at lease two distinct elements
(i.e., 0 # 1). A nonempty subset I of B is consistent if p; A ... A p, # 0 for
any nonempty finite subset {py,..,p,} of I. An wultrafilter of B is a maximal
consistent set. A filter of B is an intersection of ultrafilters (see Section 4).
Denote by 2 = {0, 1} the smallest nontrivial Boolean algebra.

Notation. Let A, B be arbitrary sets.

1. If a,b € A denote by [b/a] : A — A the map sending a to b and other
element of A to itself.

2. Suppose 0 : A — Bisamap. Ifae Aand be B, we denote by ¢ : A — B
the map sending a to b and other element ¢ of A to o(c).

3. Suppose 0 : A —> Bisamap. f U< A, V< Band 7w:U — V is a map,
let 0™ : A — B be the map such that 0™ (a) = 7(a) if a € U and 07 (a) = o(a)
otherwise.

4. |A| denotes the cardinality of A.

5. If A is a subset of B denote by rx (or simply x) the inclusion map from A
to B.

Let S be a nonempty collection of sets which contains at least one infinite set.
Let XY, Z, ... be any sets in S, viewed as sets of variables.

Let V be a variety in the sense of universal algebra.



A binding theory A (over S) of V-algebras consists of

T1. aset A*(X) and amap ex : X — A*(X) for each set X ( we often simply
write x for ex(x));

T2. an algebra A,(X) in V for each set X;

T3. an element aoc € A*(Y") for each nonempty set X, each element a € A*(X)
and each map o : X — A*(Y);

T4. an element po € A, (Y') for each nonempty set X, each element p € A, (X)
and each map o : X — A*(Y);

T5. an element Vz.p € A,(X) for each nonempty set X, each variable x € X
and each element p € A, (X);

For any set X let A(X) = A, (X) v A*(X). If X is nonempty and 0 : X —
A*(Y) is a map let o* be the map sending a € A*(X) to ac and let o, be
the map sending p € A,(X) to po. Denote by o+: A(X) — A(Y) the map
sending t € A(X) to to.

We assume that a binding theory A satisfies the following conditions for any
nonempty X, r e X, te A(X),o0: X - A*(Y) and pe A, (X):

Pl. tex =t

P2. (to)r = t(o7) it Y is nonempty, 7 : Y — A*(Z) is a map, and o7 is the
map sending z to o(x)T;

P3. zo = o(x) for any z € X;

P4. 0, : Au(X) > A,(Y) is a homomorphism of algebras in A.

P5. (Vx.p)o = Vy.(po¥/*) if Y is nonempty, o[z/y] = o for some y, z € Y such
that y # 2.

Remark 1 (a) If we omit T5 and F'5 then a system A thus defined is called a
substitution theory of V-algebras. A function ¥ defined by TS on a substitution
theory A satisfying P5 is called a binding system on A.

(b) A system A* consisting of all A*(X) and ao satisfying P1-P3 is called a
clone over S, and A is called a theory over clone A* (see [14]).

Remark 2 Suppose A is a (substitution or binding) theory.

(a) We say A is faithful if & € S, A*() is nonempty, and for any nonempty
set X and t,s € A(X) we have t = s iff to = so for any o : X — A*().

(b) We say A is a global theory if S is the category of sets.

Let A be a substitution or binding theory. Suppose X is a nonempty set and
te A(X). A subset U of X is called a support for t if we have to = tr for any
o,7: X — A*(Y) with 0|y = 7|y. Denote by A(X)y the set of elements of
A(X) with U as a support. We say t is independent of U if X\U is a support
for t. We say t is closed if 7 is a support for ¢t. By definition we assume any
element in A(¢F) is closed (if & € S). A theory A is locally finite if each
element of A(X) has a finite support.

Suppose A is a substitution theory over S and B is a substitution theory over



another collection &’ of sets such that S < &'. A morphism ¢ = (¢., ¢*) :
A — B consists of a map ¢% : A*(X) — B*(X) and a homomorphism ¢x, :
A, (X) — B.(X) of algebras for each X € S such that for any o : X — A*(Y):
N1. ¢.(p)(09") = ¢«(po) where (0¢*)(x) = ¢*(o(x));

N2, §*(a)(06*) = ¢*(ao);

N3. ¢*(z) = =.

Here for simplicity we write ¢* for ¢% and ¢, for ¢x,.

If A and B are binding theories we also require that:

N4. ¢ (V.p) = Va.(¢4(p)).

A morphism ¢ : A — B is called an embedding if ¢x+ and ¢% are injective for
any X. We define the notion of a subtheory of A in an obvious way.

A quantifier theory is a binding theory A of Boolean algebra satisfying the
following conditions for any nonempty set X, z € X and p,q € A.(X):

QL. Vz.(p A q) = V.p A V2.q5

Q2. Vx.p < p;

Q3. Vz.p = p if ply/z] = p for some y € X such that x # y.

A quantifier theory over a set {X} is called a quantifier algebra over X. A
quantifier theory is nontrivial if A,.(X) has a non-closed element for some
nonempty set X. Unless otherwise stated all the quantifier theories considered
below are nontrivial.

A quantifier model is a quantifier theory A over § with ¢§ € S satisfying the
following conditions:

M1. A*() is nonempty and A, () is a nontrivial Boolean algebra.

M2. For any z € X, p € A,(X), and 0 : X — A*(¥) we have (Vz.p)o =
/\deA*(Q) pol*.

We say A is a 2-model if A, () =2 = {0,1}.

Suppose A is a quantifier theory over S. A modification (resp. model) of
A is a quantifier theory (resp. quantifier model) B over S u {J} such that

Als\izy = Bls\igy-

Remark 3 Suppose A is a quantifier theory over S and B is a quantifier
model over collection of sets containing S and . Any morphism ¢ from A

to B induces a quantifier model A(¢) of A with A(¢).(F) = B.() and
A(9)" (D) = B (D).

Remark 4 Suppose A is a quantifier theory.

(a) Any nonempty set Z € S determines a modification A[Z] of A such
that A|Z].(F) = A.(Z) and A|Z]* (D) = A*(Z), with the given to for any
te A(X) and 0 : X — A|Z]*(F) = A(Z). The quantifier theory A[Z] is
called the modification of A by Z.

(b) If I is a filter of A (D) and A (&) /1 is the quotient algebra of Boolean al-
gebra A, () module I, we denote by A/I the modification of A with A, (&) =

A(D)/T and AJI*(F) = A*(J).



Theorem 5 (Cayley’s Completeness Theorem For Quantifier Theories) Sup-
pose A is a locally finite quantifier theory and Z € § is an infinite set. Then
the modification A[Z] of A by Z is a faithful quantifier model of A.

The following important theorem is a consequence of Cayley’s completeness
Theorem (see Theorem 22).

Theorem 6 (a) For any locally finite quantifier theory A over S there is a
global locally finite quantifier theory A’ such that A = A/|s.

(b) Any model of a global quantifier theory A’ induces a model of A’|s for any
S.

Suppose A is a locally finite quantifier theory. Suppose Z € § is an infinite
set. We say an ultrafilter I of Boolean algebra A,(Z) is perfect if for any
z € Z and ¢ € A, (Z) there is d € A*(Z) such that Vz.q v —(q|d/z]) € I.
Perfect ultrafilter plays the fundamental role in quantifier theories as that of
ultrafilter in Boolean algebras. The following theorem is a variant of ultrafilter
theorem for Boolean algebras:

Theorem 7 (Gddel’s Completeness Theorem for Quantifier Theories) Sup-
pose A is a global locally finite quantifier theory. Suppose X is an infinite set
and J is a consistent subset of A.(X).

(a) There is an infinite set X containing X and a perfect ultrafilter I of
A, (XT) containing kx.(J), where kx : X — X is the inclusion map.

(b) The modification A[X*]/I of A is a 2-model of A with prx =1 for any
peJ.

Combining Theorem 6 and 7 we obtain:

Theorem 8 (Gddel’s Completeness Theorem for Quantifier Algebras) Sup-
pose A is a locally finite quantifier algebra over an infinite set X.

(a) Suppose J is a consistent subset of A,(X). There is 2-model B of A and
a map o : X — B*(J) such that po =1 for any p e J.

(b) If p,q € Au(X) and p # q there is a 2-model B of A and a map
o: X — B*(&) such that po # qo.

The completeness theorems for quantifier theories are proved in Section 3 and
4. In Section 5 quantifier theories with equality are introduced, and ultraprod-
ucts of models of such theories are defined in Section 6. In Section 7 we define
the notion of a polyadic theory. Since the category of locally finite polyadic
algebras is equivalent to the category of locally finite quantifier algebras, the
main theorems in [10] can be easily derived from the completeness theorems
for quantifier algebras.

In the second part of this paper we will study the free locally finite quantifier
theory determined by a first-order language. Let V' = {v1,v9,...} be a fixed



countably infinite set of variables. For any integer n > 0 let V,, = {vy, ..., v,}.
Let £ be a first-order language consisting of function and relation symbols.
For every set X let £*(X) be the set of L-terms over X. If X is an infi-
nite set containing V' let L£,(X) be the set of L-formulas over X, modulo
the relation F' = G iff = F < G for any F,G € L,(X). If X is any set let
Xt =XuV,andlet L,(X) = L,(X")x be the subset of £,(X ™) determined
by the L-formulas over X* with free variables in X. Then £, (X) is a Boolean
(Lindenbaum) algebra for any set X (cf. [1], p.191). Applying the (simultane-
ous) substitution theory of first-order logic (cf. [1], p.65) we obtain a locally
finite global quantifier theory (L., £*), called the free global quantifier theory
determined by the first-order language L. Obviously (L., £*) has the following
universal property:

Theorem 9 Suppose V € S and A is a locally finite quantifier theory over S.
Suppose L is a first-order language, and ¢ : L — A is function sending each n-
ary function symbol to an element in A*(V')y, and each n-ary relation symbol
to an element in A,(V)y,. There is a unique morphism ® : (L, L*)|s —
A such that ®*(f(v1,...,vn)) = ¢(f) for each n-ary function symbol f, and
D, (p(v1, ..., vn)) = @(p) for each n-ary relation symbol p.

Let £(A) be the first-order language with A*(V)y, as the set of n-ary func-
tion symbols and A,(V)y, as the set of m-ary relation symbols. Let ¢ :
L — A be the map determined by the inclusion maps. Then the morphism
O (L(A)s, L(A)*)|s — A given by the above theorem is surjective, which
determines an isomorphism from A to the restriction A’|s of a quotient A’ of
(L(A)., L(A)*). This yields another proof for the fundamental Theorem 6.

1 Properties of Binding Theories

In this section we list some properties of a binding theory. For most of the
statements, the proofs are straightforward and therefore will be omitted.

Lemma 10 Suppose A is a (substitution or binding) theory. Assume | X| > 1.
Suppose x,y € X, t € A(X) and U is a nonempty subset of X.

(a) U is a support for t if to = tr for any two maps o,7 : X — A(X) such
that oy = 7|u.

(b) t is independent of x iff t = tly/x] for some y # x.

(c) t is independent of x iff t = s[y/z] for some s € A(X) and y # x.

(d) U is a support for t iff ty =t for a map v: X — X such that v(X) =U
and yy = 1.

(e) The intersection of a finite collection of supports for t is a support for t.
(f) If o + X — Y is injective (resp. bijective) then o= A(X) — A(Y) is
injective (resp. bijective) and o+(A(X)) = A(Y)o(x)-



Let A be a binding theory.

Lemma 11 Suppose X < Y. For any v € X and p € A,(X) we have
(Ve.p)kx = Va.(prx) (note that X €Y < A*(Y')). Thus if we identify A(X)
with A(Y)x via kx= then Vo : A, (X) — A, (X) coincides with the restriction
of Vo : Ay(Y) = AL(Y) on A (X), ie., Vo = Vo|a,(x).

Lemma 12 Suppose x € X and pe A, (X).

(a) If p has a support U < X, then Yx.p has a support U\{z}. Thus Vzx.p is
independent of x.

(b) (Vo.p)(ol=/y]) = Yy.(p(o[z/y])*/*) for any map 0 : X -V, z,y €Y and
ZF#Y.

(¢c) (Yx.p)o = Yy.(po¥/*) for any map o : X — A*(Y) and y € Y such that
o(2) is independent of y for any z in a support of Vx.p or p.

Corollary 13 Suppose A is a locally finite binding theory and'Y is an infinite
set. Then for any v € X, pe Au(X), and o : X — A*(Y), we have (Vx.p)o =
Yy.(po¥/®) for some y € Y such that o(z) is independent of y for any z in a
support of Vx.p or p.

Lemma 14 Suppose A is a quantifier theory. Suppose p,q € A (X).

(a) If p < q then Vz.p < Vz.q.

(b) Vx.p < plz/x] for any z € A (X).

(c) For any p € A,(X), Va.p is the largest element of {r < p | r is independent
of x}.

PROOF. (a) By Q1.

(b) Since Vx.p < p by Q2 and Vz.p is independent of z (Lemma 12), we have
Va.p = (Vo.p)[z/x] < p[z/x] for any z € X.

(c) If r < p and 7 is independent of x then r = Vz.r < Vz.p by (a) and Q3.
Thus Vz.p is the largest element of {r < p | r is independent of z}.

Corollary 15 A quantifier binding system on a substitution theory of Boolean
algebras is unique if exists.

Lemma 16 Suppose A is a quantifier theory and |X| > 2. Write Va;...2,.p
forYay.(...(Vx,.p)....). If z,y € X then Yyx.p = Vay.p for any pe A, (X).

PROOF. We may assume z # y. Assume z is a variable which is differ-
ent from x,y. Then Vzyz.p = Vay.((Vx.p)[z/z])) = Ve.((Vyz.p)|z/z]) =
(Vyz.p)|z/x] = Vy.(Vx.p)[2/x]) = Yyz.p by Q3 and P5. Since Va.p < p by Q2,
we have Vaxyx.p < Voy.p by Lemma 14. Thus Vyz.p < Vay.p. Symmetrically
we have Vzy.p < Vyx.p. Thus Yyz.p = Vay.p.



2  Functional Theories

Suppose V is a variety of algebras.

Suppose (B, M) is a pair consisting of a nonempty V-algebra B and a nonempty
set M. For any set X denote by M the set of maps from X to M. Let
M*(X) = M™™ be the set of amps from MX to M, and let B,(X) = BM"
be the set of maps from M* to B. We have a map ¢ : X — M*(X) sending
each x € X to the projection 7, : M* — M (with 7,(£) = £(z)) determined
by z. We shall identify x with 7,. We identify M with M*() and B with

B ().

If pe Bu(X) and 0 : X — M*(Y) is a map we define (po) € B.(Y) by
(po)(§) = p(c€) for any & : Y — M, where 0 : X — M is defined by
(0€)(z) = o(x)(§). Similarly we define ao € M*(Y') for any a € M*(X). Then
B, (X) is a V-algebra pointwisely, and each map o, : B,(X) — B.(Y) sending
p to po is a homomorphism of V-algebras.

The structure F(B, M) = (B,, M*) together with ac and po defined above
is a global substitution theory of V-algebras, called the B-valued functional
substitution theory determined by M.

Suppose B is a Boolean algebra. If x € X and p € B,(X) define Vz.p € B,(X)
such that Vz.p(§) = A,y p(E7%) if the right side infimum exists for any
€ : X — M. A subtheory A of F(B, M)|s is called a B-valued functional
quantifier theory over S if Vx.p exists for any nonempty X € S, z € X,
p € A,(X), and Va.p € A,(X). Then Vz is a well defined unary operation
on A,(X). One can verify that these unary operations Va have the following
properties for any p,q € A, (X):

L. Va.(p A q) =Va.p A Vr.gq,

2. Vz.p < p,

3. VYz.p = p if p is independent of x.

4. (Vz.p)o = Yy.(po¥/?) for any p € A, (X), 0 : X — A*(Y) and y € Y such
that o(2) is independent of y for any z € X.

Thus V is a quantifier binding system on A. The pair (A, V) is called a B-valued
functional quantifier theory over S.

Suppose A is a quantifier theory over S. A morphism of theories ¢ : A —
F(B, M) is called a quantifier morphism if the image ¢(A) of ¢ is a B-valued
functional quantifier theory over & and ¢ induces a morphism of quantifier
theories from A to ¢(A).

Example 2.1 Any quantifier model A determines a morphism m of quantifier
theories A — F(A. (), A*(Q)) sending a € A*(X) to m(a) € A*(g)A" (D"
with m(a)o = ao for any o : X — A*(), and sending p € A, (X) to n(p) €



A (D)2 D with 7(p)o = po for any o : X — A*(F). Then A is faithful
iff the morphism m is an embedding.

Theorem 17 Suppose B is a complete Boolean algebra and M s a nonempty
set. Then ¥ (B, M) = (B., M*,V) is a global quantifier model. Any morphism
from a quantifier theory A to F(B, M) determines a quantifier model of A with
A () = B and A*(F) = M. Conversely, any quantifier model of A arises
in this way. In particular, if B = 2 then any nonempty set M determines a
global quantifier 2-model ¥ (2,, M*).

3 Cayley’s Completeness Theorem

Theorem 18 Suppose A is a locally finite quantifier theory. Suppose Z € S
s an infinite set.

(a)Vz.p = N\_,pl2/x] for any x € Z and p e A, (Z).

(b) (Vz.p)o = N, po*/* for anyz € X, pe Au(X) and 0 : X — A*(Z).

(c) (Vz.p)o /\dEA* ) PO W= foranyre X, pe A, (X), ando : X — A*(Z).

PROOF. (a) We have Vz.p < p[z/z] for any z € Z by Lemma 14. Thus
Va.p < A,y plz/x]. Next assume ¢ < p[z/z] for every z € Z. Since Z is infinite
and A is locally finite, we can find y, w € Z such that z,y, w are distinct and
p and ¢ are independent of y and w. Then ¢ < p[w/x| implies that ¢|y/z] =
qly/z][z/w] < plw/x][y/x][x/w] = p. Since g[y/x] is independent of z, we have
qly/x] = Va.(q[y/x]) < Va.p. Then q = qy/z][z/y] < (Va.p)[z/y] = Va.p as
p, ¢ and Yx.p are independent of y. Hence Ya.p = A__, p[z/x].

(b) Since Z is infinite and A is locally finite, we have (Vz.p)o = ¥, (po¥/*) for
some y € Z such that o(z) is independent of y for any z in a support of p by
Corollary 13. Then

(po**)[2/y]) = po™/*.
for any z € Z. Thus by (a) we have

(Va.p)o =V, (pa¥/*) = /\( o) [2/y] = /\pa

2€7 2€Z

(c) Suppose {1, ...,x,} is a finite support for p € A,(X). Since Z is infinite
and A is locally finite, we can find y € Z such that o(z4), ...,0(z,) are inde-
pendent of y. Since (Yz.p)o < pa¥/® by (b), we have (Vz. p)a = (V:C p)old/y] <
(po¥®)[d/y] = po¥* for any d e A*(Z) Thus (Vz.p)o < Ageacx) pod/e.
But by (b) we have (Vz.p)o = A..,po™ > Ndeacx) PO dfz Thus (Vz.p)o =

/\deA(X) po/*.



Corollary 19 Suppose Z is an infinite set, p,q € A.(Z) and x,y € Z. Suppose
p < qly/x] and p,q are independent of y.

(a) p < qlz/x] for any z € Z.

(b) p < Vz.gq.

PROOF. (a) Since p < ¢[y/z] and p, g are independent of y, we have p =

plz/y] < aly/x][z/y] = q[z/x] for any z € Z.
(b) Since Vz.q = A, q[2/2] by Theorem 18 (a), we have p < V.q by (a).

Suppose A is a global theory. Any nonempty set Z determines a modification
A[Z] of A such that A[Z].() = A.(Z) and A[Z]*(D) = A*(Z), with to
for any t € A(X) and 0 : X — A[Z]*(F) = A(Z) as the same in A. A[Z] is
called the modification of A by Z.

Theorem 20 (Cayley’s Completeness Theorem For Quantifier Theories) Sup-
pose A is a global locally finite quantifier theory. Suppose Z is an infinite set.
Then the modification A[Z] of A by Z is a faithful model of A.

PROOF. Suppose p,q € A.(X) and p # ¢. Suppose U < X is a finite
support for both p,q. Let & : X — Z be a map such that k|y is injective.
Then k. |a,(x), @ Au(X)v = A, (Z) is injective. Since p,q € A,(X)y, we have
k.(p) # k+«(p). The same analysis also apply to a,b e A*(X) and a # b. Hence
the modification A[Z] of A is a faithful. If A is a quantifier theory then it
satisfies M2 by Theorem 18, (c).

Theorem 21 (Cayley’s Completeness Theorem For Quantifier Algebras) Sup-
pose A is a locally finite quantifier algebra over an infinite set X. Then the
modification A[X]| of A by X is a faithful model of A.

Theorem 22 (a) For any locally finite quantifier theory A over S there is a
global locally finite theory A’ such that A = Alls.

(b) Any model of a global quantifier theory A’ induces a model of A’|s for any
S.

PROOF. (Sketch) Suppose Z is an infinite set in S. The faithful model A[Z]
of A induces an embedding

71 A > F(A,(Z), A*(2)).

Let A’ be the subtheory of F(A,(Z), A*(Z)) generated by the image m(A)
(i.e., the intersection of all subtheories containing m(A)). Then the theory A
is isomorphic to the restriction A’|s. By Theorem 18 and Corollary 15 there
is a unique quantifier binding system V¥ on A’ such that (A’,Y) is a locally
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finite quantifier theory. Then A is isomorphic to the restriction A'|s.
(b) The assertion can be verified directly.

4 Godel’s Completeness Theorem

Let B be a nontrivial Boolean algebra. A filter of B is a subset I such that
for all p,q in I we have p A g in I and p € I, r > p implies that r € 1. We
say [ is properif [ # B, or equivalently, 0 ¢ I. An wltrafilter is a filter I such
that pe I iff —p ¢ [ for any p € B. A subset J of B is called consistent if it is
contained in a proper filter. A subset J is said to have the finite meet property
(f.m.p for short) if whenever py, ..., p, € J we have p; A ... A p, # 0.

Lemma 23 (c¢f. [1]) If J is any subset of B, let F(J) be the set of elements
p € B such that p is larger than a finite intersection of elements in J. Then
F(J) is the filter generated by J.

Lemma 24 (cf. [1]) 1. A subset J is consistent iff J has the finite meet prop-
erty.

2. A subset is a maximal consistent subset iff it is an ultrafilter.

3. Any consistent set or proper filter is contained in an ultrafilter. More pre-
cisely, any proper filter is the intersection of all ultrafilters containing it.

Suppose A is a global quantifier theory. If I is a filter of A, (¢F) and A, (F)/I
is the quotient of the Boolean algebra A, (&) module I, we denote by A/I
the modification of A with A,(&) = A.()/I and A/T*(F) = A* ().

Suppose A is a locally finite quantifier theory over S. Suppose X € S is an
infinite set. We say an ultrafilter I of A,(X) is perfect if for any z € X and
p € A, (X) there is d € A*(X) such that Vx.p v —(p[d/z]) € 1.

Lemma 25 Suppose Y is a countably infinite subset of X. An ultrafilter I of
A (X) is perfect if for any y € Y and p € A, (X) there is d € A*(X) such
that Yy.p v —(p|d/y]) € I.

PROOF. By Corollary 13, for any = € X and p € A,(X) we have Vz.p =
Vy.(ply/x]) for some y € Y such that p is independent of y. By assumption
there is d € A*(X) such that Vy.(p[y/x]) v —(p[y/x][d/y]) € I. Then Yx.p v
—(p|d/x]) € I. Hence I is prefect by definition.

The importance of the notion of ultrafilter lies in the following lemma:
Lemma 26 Suppose I is a perfect ultrafilter of A.(Z). The modification
A[Z]/I of A is a 2-model of A.
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PROOF. The condition M2 means that (Vz.p)o € I iff po¥® e I for any x €
X,pe A,(X),and d e A*(Z). Suppose (Vz.p)o € I. We have (Va.p)o < po?/®
for any d € A*(Z) by Theorem 18, (c). Since [ is a filter of A,(Z), this implies
that po?/* e I. Conversely, assume (Vz.p)o ¢ I. Since A is locally finite we
can find some y € Z such that (Vz.p)o = Vy.(po¥/*) and o(z) is independent
of y for any z in a support of p by Corollary 13. Hence Vy.(po¥/*) ¢ I. Since I
is perfect, we have Vy.(po¥/®) v —(pa¥/*[d/y]) € I for some d € A*(Z). Thus
Yy.(po¥/®) ¢ I implies that —(po¥*[d/y]) = —(po¥®) € I. Hence po¥* ¢ I. It
follows that the modification A[Z]/I of A is a 2-model of A.

Suppose A is a quantifier theory. Let |[A*| = |A*(X)z| and |A,| = |[AL(X)z]
for any infinite set X and any countably infinite subset Z of X. Note that A*
and A, are well-defined.

Lemma 27 Suppose A is a locally finite quantifier theory and X is an infinite
set.

(a) [AL(X)] = [X| + |Au] = [X] - |A] = Maa(|X|, |AL]) (cf. /8], p.164). In
particular, |A| is infinite, and if |A.| is countably infinite then |A.(X)| =
| X].

(b) |A*(X)| = | X]| + |A*] = |X]| - |A* = Max(|X]|,|A*|) . In particular, if
|A*| is countably infinite then |A*(X)| = | X]|.

PROOF. (a) Suppose Z = {z1,29,...} is a countably infinite subset of X.
For any xy,...,2,, € X let [z1,...,2y] : Z — X be the map sending z; to z;
(1t = 1,...,m) and any other z € Z to itself. Since A is nontrivial and 7 is
infinite we can find a non-closed element ¢ € A,(Z). Suppose {z1, 22, ..., 2}
(n > 0) is a minimal support for ¢. Let 7 : X x {1,...,n} — X be a bijective
map. Define a map 6 : X — A,(X) sending = to ¢[r(x,1),...7(z,n)]. Since
{m(x,1),..m(x,n)} is a set of n distinct variables, d(z) is non-closed with a
support U, = {n(z,1),..7(z,n)}. If x # y then é(x) and é(y) are non-closed
elements with disjoint minimal supports U, # U,. Thus é(z) # é(y). Hence §
is injective. So |A4(X)| = |X]|. Since Z < X we have A,(X) 2 A,(Z). Thus
|AL(X)] = |AL(2)] = |A.l. It follows that |[A.(X)| = | X|+]|As] = | X]-|AL] =
Maz(|X|,|As]). For any element p € A, (X) we can find an element p' € A, (Z)
and a sequence {zy,...,x,} < X such that p = p'[z1, ..., z,]. The map sending
each p e A,(X) to <p/, 1, ...,x,> is an injective map from A, (X) to the set
of finite sequences of elements in A,(Z) u X. Thus |A,(X)| < |AL(2)| + | X].
It follows that |A,(X)| = |X|+ |AL| = |X]| - |As] = Maz(|X|, |AL|).

(b) The proof is similar.

Theorem 28 (Gddel’s Completeness Theorem for Quantifier Theories) Sup-
pose A is a global locally finite quantifier theory. Suppose X is an infinite set
and J is a consistent subset of A (X).

(a) There is an infinite set Xt containing X and a perfect ultrafilter I of
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A (XT) containing kx.(J), where kx : X — X is the inclusion map.
(b) The modification A[X+]/I of A is a 2-model of A with pkx =1 for any
peJ.

PROOF. We may assume that A is nontrivial.

(a) Let A = |A,(X)|. Since A is nontrivial locally finite and X is infinite,
we have A = |A,(X)| = |X]|- |Ai| = Max(]X],|A,|) by Lemma 27; thus
A= |X| and A = |A,|. Let X* be a set containing X such that X"\ X has
cardinality \; variables in X 7\ X are called new variables. Then | X*| = A, and
A, (X7) is infinite by Lemma 27. Let Y be a countably infinite subset of X.
Then [V > A, (X)) = [Y] - |AL(X7)] = Maz(|Y], |AL(XT)]) = |AL(XT)] =
| X - JAL] = | X - |A = X |Ai| = X again by Lemma 27. We fix a well-
ordering

< Yas;Pa Za<i

of the set Y x A, (X™). For a < A let

0o = YYa-Pa vV —(PalZa/Yal);

where z, is the first new variable such that p, and 63 are independent of z,
for any 8 < a. (This excludes at most |a| new variables, so there are some
left.) Let
O ={l.Ja< )}, T'=kx.(J)uoO.

Since J is consistent, it has f.m.p. Since kx, is an injective homomorphism
of Boolean algebras, rx.(J) has also fm.p. Thus kx.(J) is consistent. Also
X is a support for any member of kx,(J). Thus any member of kx,.(J) is
independent of any new variable. We show that I' is consistent. Assume this
is not true. Then there is a finite intersection p # 0 of members of kx,(J),
and o < ... < oy, < a < A such that

PAOay Ao ABy,, A, =0.
Take the least such a. Let

q=p A0y A .0, .

Then
q#0, qgnanb,=0.
Since
Oa = VYa-Pa vV ~(Palza/Tal),
we have
g A (VWa-Pa vV =(Palza/Ta]) = 0.
Thus

(g AVYa-pa) v (@ A =(Palza/20])) = 0.

13



This implies
g AVYa.Da =0, g A —(palza/Tal) = 0.
Hence we have
q < _'(Vya-pa)y q < pa[za/xa].
Since ¢, p, are independent of the new variable z,, applying Corollary 19 to
q < Palza/xa] we conclude that

q < VYa-Pa-

Thus

4 < VYa-Pa A —(Va-pa) = 0.
We obtain ¢ = 0, which contradicts to the assumption that ¢ # 0. This shows
that I' has fm.p. Hence I' is consistent. Let I be an ultrafilter in A,(X™)
containing I'. Then [ is a perfect ultrafilter in A, (X ™). Also kx.(J) < T < I.
(b) By Lemma 26 we conclude that A[X*]/I of A is a 2-model of A, and
prx = kxs(p) € I for any p € J. Thus prx = 1.

Combining Theorem 33 and 22 we obtain:

Theorem 29 (Gddel’s Completeness Theorem for Quantifier Algebras) Sup-
pose A is a locally finite quantifier algebra over an infinite set X.

(a) Suppose J is a consistent subset of A,(X). There is 2-model B of A and
a map o : X — B*(J) such that po =1 for any p e J.

(b) If p,qg € A (X) and p # q there is a 2-model B of A and a map
o: X — B*(&) such that po # qo.

PROOF. (b) Since p # g, either p € ¢ or ¢ £ p. Assume the first case
holds. Then p A (—¢q) # 0. By (a) we can find a 2-model B of A and a map
0: X — B*(¥) such that (p A —¢q)o = 1. Then (p A —q)o = (po) A (—q)o = 1.
Hence po = 1 and (—¢)o = —(qo) = 1. Thus go = 0. It follows that po # qo.

5 Quantifier Theories with Equality

Let A be a quantifier theory. An equality e of A consists of an element
e(a,b) € A (X) for any a,b € A*(X) such that the following condition is
satisfied:

El. e(a,b)o = e(ao, bo) for any a,be A*(X) and 0 : X — A*(Y).

E2. e(a,a) =1 for any a € A*(X);

E3. p A e(x,y) < pla/y] for any z,y € X and p e A,(X).

A quantifier theory with equality is a quantifier theory together with an equality
e of A.

A normal quantifier model is a quantifier model with equality such that the
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following condition is satisfied:
M3. For any two elements a,b € A*(J) we have e(a,a) = 1 and e(a,b) = 0 if
a #b.

Suppose A and B are quantifier theories with equality. By a morphism ¢ of
quantifier theories with equality from A to B we mean a morphism of binding
theories such that the following condition is satisfied:

N5 ¢u(e(a, b)) = e(¢*(a), ¢*(b))-

Lemma 30 Suppose e is an equality of a quantifier theory A.

(a) p A e(x,y) = plx/y] A e(z,y).
(b) e(x,y) is the smallest element p of A,(X) such that ply/x] = 1.

PROOF. (a) By E3 we have p[y/z] A (—p) A e(z,y) < ply/z] A (—p)[z/y] =
(p A =p)ly/a] = Oly/z] = 0. Thus ply/z] A e(z,y) < p. So ply/z] A e(z,y) <
pAre(z,y). But E3 implies that pae(z,y) < plz/y| rne(x,y). Thus pre(z,y) =
plz/y] A e(@,y).

(b) We have e(z,y)[y/z] = e(y,y) = 1. Next if p[y/z] = 1 then by (a) we have
pAe(r,y) =1nae(z,y). Thus e(z,y) < p.

Corollary 31 An equality of a quantifier theory is unique if exists.

Suppose A is a locally finite quantifier 2-model with equality. Denote by the
equivalence relation # on A*(J) such that afb iff e(a,b) = 1. Then 0 is a
congruence on A*(() in the sense that po = pr and acfar for any a € A*(X),
p € AX), and 0,7 : X - A*() such that o(z)07(z) for any z € X. Let
A*(F)/0 be the quotient of A*(F) by 6. Let A/6 be the modification of A
with (A/0),(2) — A4(2) and (A/0)*(2) — A*(2)/0

Lemma 32 The modification A/0 of A is a normal quantifier model.

It follows that Theorem 33 also applies to locally finite quantifier theory with
equality:

Theorem 33 (Gddel’s Completeness Theorem for Quantifier Theories with
Equality) Suppose A is a global locally finite quantifier theory with equality.
Suppose X is an infinite set and J is a consistent subset of A.(X). There is
an infinite set X+ containing X and a perfect ultrafilter I of A.(X™) con-
taining kx«(J), where kx : X — X™* is the inclusion map. The modification
(A[XT]/I)/0 of A is a normal 2-model of A with pkx =1 for any pe J.

Theorem 34 (Gddel’s Completeness Theorem for Quantifier Algebras with
Equality) Suppose A is a locally finite quantifier algebra with equality over an

infinite set X. Suppose J is a proper filter of A,(X). There is normal 2-model
B of A and a map o : X — B*(J) such that po =1 for any p € J.
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6 Ultraproducts of Models

Let Z be a nonempty index set. Let A be a locally finite quantifier theory.
For each i € Z let B; be a 2-model of A. Let [[,.; Bf¥(&) and [],.; 2 be the
Cartesian products. Denote by B the modification of A with B, (&) = [ ;72
and B*(J) = [ [,z B (), such that (ac)(i) = ao; and (po)(i) = po; for any
ae A*(X),pe Ay(X), 0: X - B*(), where 0, : X — B}(Q) is defined by
oi(z) = o(z)(7) for any z € X.

Theorem 35 (a) B is a model of A.
(b) If I is an ultrafilter of B.(F) = [ [,z 2 then B/I is a 2-model of A.

PROOF. (a) We prove that for any z € X, p € B,(X) = A,(X), and
o: X — B*(Q) we have (Vz.p)o = /\deB*(g)pad/m. For any ¢ € Z we have

(Vo.p)o)(i) = (Vo.p)o; < pol™* = (po¥)(i) for any d € B*(Z), thus

(Vz.p)o < Asepxz) po?/. Conversely, suppose i € Z such that po?/*(i) =
po?/" — 1 for any d € B*(¢). Since d(i) could be any element in B¥((),
we have pafl/x = 1 for any d’' € B}(&). Then (Vx.po;) = /\d/eB*(g) pafl/fc -
/\d’eB’.“(@) 1 =1 as B, is a model of A. Thus (Vz.p)o > /\deB*(g) po?/*. Hence
(Vz.p)o = /\deB*(@) po¥/*.

(b) We prove that for any z € X, p € B,(X), and 0 : X — B*() we
have (Vz.p)o = Ayeps(g po¥/® in B,(&)/1, i.e., (Vz.p)o € I iff po¥* e I for
any d € B*((). First assume (Vz.p)o € I. Since by (a) we have (Vx.p)o =
/\deB*(Q) pod® thus (Va.p)o < po?/® for any d € B*((¥), so po¥* e I for any
d e B*(() as I is a filter. Next assume (Vz.p)o ¢ I. We have to find ' : X —
B..() such that pa?/* ¢ I. Since I is an ultrafilter, we have (=Vz.p)o € I,
Suppose (—Vz.p)o(i) = 1. Then (—=Vz.p)o; = 1. So (Vz.p)o; = 0. Since B, is a
model, there is d; € B*() such that po%/* = 0. Let ' : X — B, (&) be any
map such that d(i) = a; for any ¢ with (=Vz.p)o(i) = 1. Then (=Vz.p)o(i) = 1
implies that po?/*(i) = 0, i.e., —po?/*(i) = 1. Thus (=Va.p)o < —po?/®.
Hence —po?/* € I as I is a filter. Since I is an ultrafilter, we have po®/* ¢ I.
This finish the proof.

Next assume A is a quantifier theory with equality and each B; is a normal
2-model of A. Suppose [ is an ultrafilter of B, () = [,z 2. Let 0 be the
equivalence relation on (B/I)*() = [ [,cz Bf (&) such that afb iff e(a,b) = 1
in (B/1).(&) = ([ Liez 2)/1 for any a,b € [[;c; Bf ().

Applying Lemma 32 we obtain the following theorem, which implies Lo$’s
Ultraproduct Theorem in model theory (see [1] p.180):

Theorem 36 Under the above assumptions (B/I)/0 is a normal 2-model of
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7 Polyadic Theories

A polyadic theory (over S) consists of a substitution theory A of Boolean
algebras (over S) together with a map Vi : A, (X) — A, (X) for any nonempty
set X € S, and U € X such that for any p,q e A, (X):

1. V@p = Pp.

2. Vyovp = VyVyp for any U,V < X.

3. Yup)o = Vy(po™) for any map o : X - A*(Y), U< X,V €Y, and any
injective map m : U — V such that o(x) is independent of V' for any z € X.
4.Yu(p A q) =Yup A Vug.

5. Vup < p.

6. Yyp = p if p is independent of U.

If S = {X} then A is a polyadic algebra over X in the sense of Halmos [10].

A polyadic model is a polyadic theory A over § with ¢J € S satisfying the
following conditions:

M1. A*() is nonempty and A, (¢J) is a nontrivial Boolean algebra.

M2. For any U < X, p € A,(X), and 0 : X — A*() we have (Vy.p) =
N7 | Tlxw = olx\w}, where 7: X — A*(() is a map.

We say A is a polyadic 2-model it A, () =2 = {0, 1}.

Suppose A is a polyadic theory over S. A modification (resp. model) of A is a
polyadic theory (resp. polyadic model) B over S U {(Z} such that Als\ (g =

Bls\(z}-

Any polyadic quantifier theory induces a quantifier theory with Vo = V{z}.
Conversely, any locally finite quantifier theory determines a locally finite polyadic
theory with Vyp = Vzy...x,.p for any set U < X, where {z1,...,x,} € U is any
finite support for p (cf. Lemma 16). Hence the notion of locally finite polyadic
theory is equivalent to that of locally finite quantifier theory (cf. [17]). For
other approaches to the theory of polyadic algebras see [2] - [7], [9] - [12] and
[17] - [20].

Note that Theorem 22 also applies to locally finite polyadic theories:

Theorem 37 (a) For any locally finite polyadic theory A over S there is a
global theory A’ such that A = A'|s.

(b) Any model of a global polyadic theory A’ induces a model of A'|s for any
S.
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