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Abstract

Algebraic logic studies algebraic theories related to proposition and first-order
logic. A new algebraic approach to first-order logic is sketched in this paper. We
introduce the notion of a quantifier theory, which is a functor from the category
of a monad of sets to the category of Boolean algebras, together with a uniquely
determined system of quantifiers. A striking feature of this approach is that Cay-
ley’s Completeness Theorem and Gödel’s Completeness Theorem can be stated and
proved in a much simpler fashion for quantifier theories. Both theorems are due to
Halmos for polyadic algebras. We also present a simple transparent treatment of
ultraproducts of models of a quantifier theory.
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Introduction

Algebraic logic studies algebraic theories related to proposition and first-order
logic. A new algebraic approach to first-order logic is sketched in this paper. We
introduce the notion of a quantifier theory and prove Cayley’s Completeness
Theorem and Gödel’s Completeness Theorem for quantifier theories. Both
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theorems are due to Halmos for polyadic algebras. We also present a simple
transparent treatment of ultraproducts of models of a quantifier theory. This
approach to algebraic logic is based on the theory of clones (see [13]-[16]).

It is well known that Boolean algebras algebrazies proposition logic, and
polyadic algebras algebraizes first-order logic. In literature polyadic algebras
are usually defined as a substitution Boolean algebra over a fixed set of vari-
ables without terms (cf. [10]). In order to prove Gödel’s completeness theorem
for polyadic algebras one needs to add constants to a polyadic algebra as new
closed terms. Halmos’s original approach to the theory of constants and terms
for polyadic algebra are quite involved. To overcome these conceptual difficul-
ties we introduce the notion of a quantifier theory, which is a functor from
the Kleisli category of a monad of sets to the categories of Boolean algebras,
equipped with a binding system of quantifiers. This is a very natural approach
to first-order logic as the semantic or syntax of quantifier logic provide con-
crete or abstract quantifier theories respectively (see Section 2 and the last
part of this introduction).

By a Boolean algebra B we mean a complemented distributive lattice, which
may be viewed as an algebra pB,^,_, , 0, 1q with two binary operations
^,_, a unary operation  , and two distinguished elements 0, 1. Alternatively,
a Boolean algebra is an algebra pB,^, q such that pB,^q is a commutative
semigroup and p ^ p qq � r ^ p rq iff p ^ q � p for any p, q, r P B (cf. [1]
[21]). A Boolean algebra is nontrivial if it has at lease two distinct elements
(i.e., 0 � 1). A nonempty subset I of B is consistent if p1 ^ ... ^ pn � 0 for
any nonempty finite subset tp1, .., pnu of I. An ultrafilter of B is a maximal
consistent set. A filter of B is an intersection of ultrafilters (see Section 4).
Denote by 2 � t0, 1u the smallest nontrivial Boolean algebra.

Notation. Let A,B be arbitrary sets.
1. If a, b P A denote by rb{as : A Ñ A the map sending a to b and other
element of A to itself.
2. Suppose σ : AÑ B is a map. If a P A and b P B, we denote by σb{a : AÑ B
the map sending a to b and other element c of A to σpcq.
3. Suppose σ : A Ñ B is a map. If U � A, V � B and π : U Ñ V is a map,
let σπ : AÑ B be the map such that σπpaq � πpaq if a P U and σπpaq � σpaq
otherwise.
4. |A| denotes the cardinality of A.
5. If A is a subset of B denote by κX (or simply κ) the inclusion map from A
to B.

Let S be a nonempty collection of sets which contains at least one infinite set.
Let X, Y, Z, ... be any sets in S, viewed as sets of variables.

Let V be a variety in the sense of universal algebra.
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A binding theory A (over S) of V-algebras consists of
T1. a set A�pXq and a map ϵX : X Ñ A�pXq for each set X ( we often simply
write x for ϵXpxq);
T2. an algebra A�pXq in V for each set X;
T3. an element aσ P A�pY q for each nonempty set X, each element a P A�pXq
and each map σ : X Ñ A�pY q;
T4. an element pσ P A�pY q for each nonempty set X, each element p P A�pXq
and each map σ : X Ñ A�pY q;
T5. an element @x.p P A�pXq for each nonempty set X, each variable x P X
and each element p P A�pXq;

For any set X let ApXq � A�pXq YA�pXq. If X is nonempty and σ : X Ñ
A�pY q is a map let σ� be the map sending a P A�pXq to aσ and let σ� be
the map sending p P A�pXq to pσ. Denote by σ�: ApXq Ñ ApY q the map
sending t P ApXq to tσ.

We assume that a binding theory A satisfies the following conditions for any
nonempty X, x P X, t P ApXq, σ : X Ñ A�pY q and p P A�pXq:
P1. tϵX � t;
P2. ptσqτ � tpστq if Y is nonempty, τ : Y Ñ A�pZq is a map, and στ is the
map sending x to σpxqτ ;
P3. xσ � σpxq for any x P X;
P4. σ� : A�pXq Ñ A�pY q is a homomorphism of algebras in A.
P5. p@x.pqσ � @y.ppσy{xq if Y is nonempty, σrz{ys � σ for some y, z P Y such
that y � z.

Remark 1 (a) If we omit T5 and F5 then a system A thus defined is called a
substitution theory of V-algebras. A function @ defined by T5 on a substitution
theory A satisfying P5 is called a binding system on A.
(b) A system A� consisting of all A�pXq and aσ satisfying P1-P3 is called a
clone over S, and A is called a theory over clone A� (see [14]).

Remark 2 Suppose A is a (substitution or binding) theory.
(a) We say A is faithful if H P S, A�pHq is nonempty, and for any nonempty
set X and t, s P ApXq we have t � s iff tσ � sσ for any σ : X Ñ A�pHq.
(b) We say A is a global theory if S is the category of sets.

Let A be a substitution or binding theory. Suppose X is a nonempty set and
t P ApXq. A subset U of X is called a support for t if we have tσ � tτ for any
σ, τ : X Ñ A�pY q with σ|U � τ |U . Denote by ApX qU the set of elements of
ApXq with U as a support. We say t is independent of U if XzU is a support
for t. We say t is closed if H is a support for t. By definition we assume any
element in ApHq is closed (if H P S). A theory A is locally finite if each
element of ApXq has a finite support.

Suppose A is a substitution theory over S and B is a substitution theory over
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another collection S 1 of sets such that S � S 1. A morphism ϕ � pϕ�, ϕ
�q :

AÑ B consists of a map ϕ�X : A�pXq Ñ B�pXq and a homomorphism ϕX� :
A�pXq Ñ B�pXq of algebras for each X P S such that for any σ : X Ñ A�pY q:
N1. ϕ�ppqpσϕ

�q � ϕ�ppσq where pσϕ�qpxq � ϕ�pσpxqq;
N2. ϕ�paqpσϕ�q � ϕ�paσq;
N3. ϕ�pxq � x.
Here for simplicity we write ϕ� for ϕ�X and ϕ� for ϕX�.
If A and B are binding theories we also require that:
N4. ϕ�p@x.pq � @x.pϕ�ppqq.
A morphism ϕ : AÑ B is called an embedding if ϕX� and ϕ�X are injective for
any X. We define the notion of a subtheory of A in an obvious way.

A quantifier theory is a binding theory A of Boolean algebra satisfying the
following conditions for any nonempty set X, x P X and p, q P A�pXq:
Q1. @x.pp^ qq � @x.p^ @x.q;
Q2. @x.p ¤ p;
Q3. @x.p � p if pry{xs � p for some y P X such that x � y.
A quantifier theory over a set tXu is called a quantifier algebra over X. A
quantifier theory is nontrivial if A�pXq has a non-closed element for some
nonempty set X. Unless otherwise stated all the quantifier theories considered
below are nontrivial.

A quantifier model is a quantifier theory A over S with H P S satisfying the
following conditions:
M1. A�pHq is nonempty and A�pHq is a nontrivial Boolean algebra.
M2. For any x P X, p P A�pXq, and σ : X Ñ A�pHq we have p@x.pqσ ��

dPA�pHq pσ
d{x.

We say A is a 2-model if A�pHq � 2 � t0, 1u.
Suppose A is a quantifier theory over S. A modification (resp. model) of
A is a quantifier theory (resp. quantifier model) B over S Y tHu such that
A|SztHu � B|SztHu.

Remark 3 Suppose A is a quantifier theory over S and B is a quantifier
model over collection of sets containing S and H. Any morphism ϕ from A
to B induces a quantifier model Apϕq of A with Apϕq�pHq � B�pHq and
Apϕq�pHq � B�pHq.

Remark 4 Suppose A is a quantifier theory.
(a) Any nonempty set Z P S determines a modification ArZs of A such
that ArZs�pHq � A�pZq and ArZs�pHq � A�pZq, with the given tσ for any
t P ApXq and σ : X Ñ ArZs�pHq � ApZq. The quantifier theory ArZs is
called the modification of A by Z.
(b) If I is a filter of A�pHq and A�pHq{I is the quotient algebra of Boolean al-
gebra A�pHq module I, we denote by A{I the modification of A with A�pHq �
A�pHq{I and A{I�pHq � A�pHq.
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Theorem 5 (Cayley’s Completeness Theorem For Quantifier Theories) Sup-
pose A is a locally finite quantifier theory and Z P S is an infinite set. Then
the modification ArZs of A by Z is a faithful quantifier model of A.

The following important theorem is a consequence of Cayley’s completeness
Theorem (see Theorem 22).

Theorem 6 (a) For any locally finite quantifier theory A over S there is a
global locally finite quantifier theory A1 such that A � A1|S .
(b) Any model of a global quantifier theory A1 induces a model of A1|S for any
S.

Suppose A is a locally finite quantifier theory. Suppose Z P S is an infinite
set. We say an ultrafilter I of Boolean algebra A�pZq is perfect if for any
z P Z and q P A�pZq there is d P A�pZq such that @z.q _  pqrd{zsq P I.
Perfect ultrafilter plays the fundamental role in quantifier theories as that of
ultrafilter in Boolean algebras. The following theorem is a variant of ultrafilter
theorem for Boolean algebras:

Theorem 7 (Gödel’s Completeness Theorem for Quantifier Theories) Sup-
pose A is a global locally finite quantifier theory. Suppose X is an infinite set
and J is a consistent subset of A�pXq.
(a) There is an infinite set X� containing X and a perfect ultrafilter I of
A�pX

�q containing κX�pJq, where κX : X Ñ X� is the inclusion map.
(b) The modification ArX�s{I of A is a 2-model of A with pκX � 1 for any
p P J .

Combining Theorem 6 and 7 we obtain:

Theorem 8 (Gödel’s Completeness Theorem for Quantifier Algebras) Sup-
pose A is a locally finite quantifier algebra over an infinite set X.
(a) Suppose J is a consistent subset of A�pXq. There is 2-model B of A and
a map σ : X Ñ B�pHq such that pσ � 1 for any p P J .
(b) If p, q P A�pXq and p � q there is a 2-model B of A and a map
σ : X Ñ B�pHq such that pσ � qσ.

The completeness theorems for quantifier theories are proved in Section 3 and
4. In Section 5 quantifier theories with equality are introduced, and ultraprod-
ucts of models of such theories are defined in Section 6. In Section 7 we define
the notion of a polyadic theory. Since the category of locally finite polyadic
algebras is equivalent to the category of locally finite quantifier algebras, the
main theorems in [10] can be easily derived from the completeness theorems
for quantifier algebras.

In the second part of this paper we will study the free locally finite quantifier
theory determined by a first-order language. Let V � tv1, v2, ...u be a fixed
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countably infinite set of variables. For any integer n ¥ 0 let Vn � tv1, ..., vnu.
Let L be a first-order language consisting of function and relation symbols.
For every set X let L�pXq be the set of L-terms over X. If X is an infi-
nite set containing V let L�pXq be the set of L-formulas over X, modulo
the relation F � G iff $ F ô G for any F,G P L�pXq. If X is any set let
X� � XYV , and let L�pXq � L�pX

�qX be the subset of L�pX
�q determined

by the L-formulas over X� with free variables in X. Then L�pXq is a Boolean
(Lindenbaum) algebra for any set X (cf. [1], p.191). Applying the (simultane-
ous) substitution theory of first-order logic (cf. [1], p.65) we obtain a locally
finite global quantifier theory pL�,L�q, called the free global quantifier theory
determined by the first-order language L. Obviously pL�,L�q has the following
universal property:

Theorem 9 Suppose V P S and A is a locally finite quantifier theory over S.
Suppose L is a first-order language, and ϕ : LÑ A is function sending each n-
ary function symbol to an element in A�pV qVn and each n-ary relation symbol
to an element in A�pV qVn. There is a unique morphism Φ : pL�,L�q|S Ñ
A such that Φ�pfpv1, ..., vnqq � ϕpfq for each n-ary function symbol f , and
Φ�pppv1, ..., vnqq � ϕppq for each n-ary relation symbol p.

Let LpAq be the first-order language with A�pV qVn as the set of n-ary func-
tion symbols and A�pV qVn as the set of n-ary relation symbols. Let ϕ :
L Ñ A be the map determined by the inclusion maps. Then the morphism
Φ : pLpAq�,LpAq�q|S Ñ A given by the above theorem is surjective, which
determines an isomorphism from A to the restriction A1|S of a quotient A1 of
pLpAq�,LpAq�q. This yields another proof for the fundamental Theorem 6.

1 Properties of Binding Theories

In this section we list some properties of a binding theory. For most of the
statements, the proofs are straightforward and therefore will be omitted.

Lemma 10 Suppose A is a (substitution or binding) theory. Assume |X| ¡ 1.
Suppose x, y P X, t P ApXq and U is a nonempty subset of X.
(a) U is a support for t if tσ � tτ for any two maps σ, τ : X Ñ ApXq such
that σ|U � τ |U .
(b) t is independent of x iff t � try{xs for some y � x.
(c) t is independent of x iff t � sry{xs for some s P ApXq and y � x.
(d) U is a support for t iff tγ � t for a map γ : X Ñ X such that γpXq � U
and γγ � γ.
(e) The intersection of a finite collection of supports for t is a support for t.
(f) If σ : X Ñ Y is injective (resp. bijective) then σ�: ApXq Ñ ApY q is
injective (resp. bijective) and σ�pApXqq � ApY qσpXq.
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Let A be a binding theory.

Lemma 11 Suppose X � Y . For any x P X and p P A�pXq we have
p@x.pqκX � @x.ppκXq (note that X � Y � A�pY q). Thus if we identify ApXq
with ApY qX via κX� then @x : A�pXq Ñ A�pXq coincides with the restriction
of @x : A�pY q Ñ A�pY q on A�pXq, i.e., @x � @x|A�pXq.

Lemma 12 Suppose x P X and p P A�pXq.
(a) If p has a support U � X, then @x.p has a support Uztxu. Thus @x.p is
independent of x.
(b) p@x.pqpσrz{ysq � @y.pppσrz{ysqy{xq for any map σ : X Ñ Y , z, y P Y and
z � y.
(c) p@x.pqσ � @y.ppσy{xq for any map σ : X Ñ A�pY q and y P Y such that
σpzq is independent of y for any z in a support of @x.p or p.

Corollary 13 Suppose A is a locally finite binding theory and Y is an infinite
set. Then for any x P X, p P A�pXq, and σ : X Ñ A�pY q, we have p@x.pqσ �
@y.ppσy{xq for some y P Y such that σpzq is independent of y for any z in a
support of @x.p or p.

Lemma 14 Suppose A is a quantifier theory. Suppose p, q P A�pXq.
(a) If p ¤ q then @x.p ¤ @x.q.
(b) @x.p ¤ prz{xs for any z P A�pXq.
(c) For any p P A�pXq, @x.p is the largest element of tr ¤ p | r is independent
of xu.

PROOF. (a) By Q1.
(b) Since @x.p ¤ p by Q2 and @x.p is independent of x (Lemma 12), we have
@x.p � p@x.pqrz{xs ¤ prz{xs for any z P X.
(c) If r ¤ p and r is independent of x then r � @x.r ¤ @x.p by (a) and Q3.
Thus @x.p is the largest element of tr ¤ p | r is independent of xu.

Corollary 15 A quantifier binding system on a substitution theory of Boolean
algebras is unique if exists.

Lemma 16 Suppose A is a quantifier theory and |X| ¡ 2. Write @x1...xn.p
for @x1.p...p@xn.pq....q. If x, y P X then @yx.p � @xy.p for any p P A�pXq.

PROOF. We may assume x � y. Assume z is a variable which is differ-
ent from x, y. Then @xyx.p � @xy.pp@x.pqrz{xsqq � @x.pp@yx.pqrz{xsq �
p@yx.pqrz{xs � @y.pp@x.pqrz{xsq � @yx.p by Q3 and P5. Since @x.p ¤ p by Q2,
we have @xyx.p ¤ @xy.p by Lemma 14. Thus @yx.p ¤ @xy.p. Symmetrically
we have @xy.p ¤ @yx.p. Thus @yx.p � @xy.p.
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2 Functional Theories

Suppose V is a variety of algebras.

Suppose pB,Mq is a pair consisting of a nonempty V-algebra B and a nonempty
set M . For any set X denote by MX the set of maps from X to M . Let
M�pXq � MMX

be the set of amps from MX to M , and let B�pXq � BMX

be the set of maps from MX to B. We have a map ϵ : X Ñ M�pXq sending
each x P X to the projection πx : MX Ñ M (with πxpξq � ξpxq) determined
by x. We shall identify x with πx. We identify M with M�pHq and B with
B�pHq.

If p P B�pXq and σ : X Ñ M�pY q is a map we define ppσq P B�pY q by
ppσqpξq � ppσξq for any ξ : Y Ñ M , where σξ : X Ñ M is defined by
pσξqpxq � σpxqpξq. Similarly we define aσ PM�pY q for any a PM�pXq. Then
B�pXq is a V-algebra pointwisely, and each map σ� : B�pXq Ñ B�pY q sending
p to pσ is a homomorphism of V-algebras.

The structure FpB,Mq � pB�,M
�q together with aσ and pσ defined above

is a global substitution theory of V-algebras, called the B-valued functional
substitution theory determined by M .

Suppose B is a Boolean algebra. If x P X and p P B�pXq define @x.p P B�pXq
such that @x.ppξq �

�
aPM ppξa{xq if the right side infimum exists for any

ξ : X Ñ M . A subtheory A of FpB,Mq|S is called a B-valued functional
quantifier theory over S if @x.p exists for any nonempty X P S, x P X,
p P A�pXq, and @x.p P A�pXq. Then @x is a well defined unary operation
on A�pXq. One can verify that these unary operations @x have the following
properties for any p, q P A�pXq:
1. @x.pp^ qq � @x.p^ @x.q,
2. @x.p ¤ p,
3. @x.p � p if p is independent of x.
4. p@x.pqσ � @y.ppσy{xq for any p P A�pXq, σ : X Ñ A�pY q and y P Y such
that σpzq is independent of y for any z P X.
Thus @ is a quantifier binding system on A. The pair pA, @q is called a B-valued
functional quantifier theory over S.

Suppose A is a quantifier theory over S. A morphism of theories ϕ : A Ñ
FpB,Mq is called a quantifier morphism if the image ϕpAq of ϕ is a B-valued
functional quantifier theory over S and ϕ induces a morphism of quantifier
theories from A to ϕpAq.

Example 2.1 Any quantifier model A determines a morphism π of quantifier
theories A Ñ FpA�pHq,A

�pHqq sending a P A�pXq to πpaq P A�pHqA
�pHqX

with πpaqσ � aσ for any σ : X Ñ A�pHq, and sending p P A�pXq to πppq P
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A�pHq
A�pHqX with πppqσ � pσ for any σ : X Ñ A�pHq. Then A is faithful

iff the morphism π is an embedding.

Theorem 17 Suppose B is a complete Boolean algebra and M is a nonempty
set. Then FpB,Mq � pB�,M

�, @q is a global quantifier model. Any morphism
from a quantifier theory A to FpB,Mq determines a quantifier model of A with
A�pHq � B and A�pHq � M . Conversely, any quantifier model of A arises
in this way. In particular, if B � 2 then any nonempty set M determines a
global quantifier 2-model Fp2�,M

�q.

3 Cayley’s Completeness Theorem

Theorem 18 Suppose A is a locally finite quantifier theory. Suppose Z P S
is an infinite set.
(a) @x.p �

�
zPZ prz{xs for any x P Z and p P A�pZq.

(b) p@x.pqσ �
�

zPZ pσz{x for any x P X, p P A�pXq and σ : X Ñ A�pZq.
(c) p@x.pqσ �

�
dPA�pZq pσ

d{x for any x P X, p P A�pXq, and σ : X Ñ A�pZq.

PROOF. (a) We have @x.p ¤ prz{xs for any z P Z by Lemma 14. Thus
@x.p ¤

�
zPZ prz{xs. Next assume q ¤ prz{xs for every z P Z. Since Z is infinite

and A is locally finite, we can find y, w P Z such that x, y, w are distinct and
p and q are independent of y and w. Then q ¤ prw{xs implies that qry{xs �
qry{xsrx{ws ¤ prw{xsry{xsrx{ws � p. Since qry{xs is independent of x, we have
qry{xs � @x.pqry{xsq ¤ @x.p. Then q � qry{xsrx{ys ¤ p@x.pqrx{ys � @x.p as
p, q and @x.p are independent of y. Hence @x.p �

�
zPZ prz{xs.

(b) Since Z is infinite and A is locally finite, we have p@x.pqσ � @yppσ
y{xq for

some y P Z such that σpzq is independent of y for any z in a support of p by
Corollary 13. Then

ppσy{xqrz{ysq � pσz{x.

for any z P Z. Thus by (a) we have

p@x.pqσ � @yppσ
y{xq �

©

zPZ

ppσy{xqrz{ys �
©

zPZ

pσz{x.

(c) Suppose tx1, ..., xnu is a finite support for p P A�pXq. Since Z is infinite
and A is locally finite, we can find y P Z such that σpx1q, ..., σpxnq are inde-
pendent of y. Since p@x.pqσ ¤ pσy{x by (b), we have p@x.pqσ � p@x.pqσrd{ys ¤
ppσy{xqrd{ys � pσd{x for any d P A�pZq. Thus p@x.pqσ ¤

�
dPApXq pσ

d{x.

But by (b) we have p@x.pqσ �
�

zPZ pσz{x ¥
�

dPApXq pσ
d{x. Thus p@x.pqσ ��

dPApXq pσ
d{x.
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Corollary 19 Suppose Z is an infinite set, p, q P A�pZq and x, y P Z. Suppose
p ¤ qry{xs and p, q are independent of y.
(a) p ¤ qrz{xs for any z P Z.
(b) p ¤ @x.q.

PROOF. (a) Since p ¤ qry{xs and p, q are independent of y, we have p �
prz{ys ¤ qry{xsrz{ys � qrz{xs for any z P Z.
(b) Since @x.q �

�
zPZ qrz{xs by Theorem 18 (a), we have p ¤ @x.q by (a).

Suppose A is a global theory. Any nonempty set Z determines a modification
ArZs of A such that ArZs�pHq � A�pZq and ArZs�pHq � A�pZq, with tσ
for any t P ApXq and σ : X Ñ ArZs�pHq � ApZq as the same in A. ArZs is
called the modification of A by Z.

Theorem 20 (Cayley’s Completeness Theorem For Quantifier Theories) Sup-
pose A is a global locally finite quantifier theory. Suppose Z is an infinite set.
Then the modification ArZs of A by Z is a faithful model of A.

PROOF. Suppose p, q P A�pXq and p � q. Suppose U � X is a finite
support for both p, q. Let k : X Ñ Z be a map such that k|U is injective.
Then k�|A�pXqU : A�pXqU Ñ A�pZq is injective. Since p, q P A�pXqU , we have
k�ppq � k�ppq. The same analysis also apply to a, b P A�pXq and a � b. Hence
the modification ArZs of A is a faithful. If A is a quantifier theory then it
satisfies M2 by Theorem 18, (c).

Theorem 21 (Cayley’s Completeness Theorem For Quantifier Algebras) Sup-
pose A is a locally finite quantifier algebra over an infinite set X. Then the
modification ArXs of A by X is a faithful model of A.

Theorem 22 (a) For any locally finite quantifier theory A over S there is a
global locally finite theory A1 such that A � A1|S .
(b) Any model of a global quantifier theory A1 induces a model of A1|S for any
S.

PROOF. (Sketch) Suppose Z is an infinite set in S. The faithful model ArZs
of A induces an embedding

π : AÑ FpA�pZq,A
�pZqq.

Let A1 be the subtheory of FpA�pZq,A
�pZqq generated by the image πpAq

(i.e., the intersection of all subtheories containing πpAq). Then the theory A
is isomorphic to the restriction A1|S . By Theorem 18 and Corollary 15 there
is a unique quantifier binding system @ on A1 such that pA1, @q is a locally
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finite quantifier theory. Then A is isomorphic to the restriction A1|S .
(b) The assertion can be verified directly.

4 Gödel’s Completeness Theorem

Let B be a nontrivial Boolean algebra. A filter of B is a subset I such that
for all p, q in I we have p ^ q in I and p P I, r ¥ p implies that r P I. We
say I is proper if I � B, or equivalently, 0 R I. An ultrafilter is a filter I such
that p P I iff  p R I for any p P B. A subset J of B is called consistent if it is
contained in a proper filter. A subset J is said to have the finite meet property
(f.m.p for short) if whenever p1, ..., pn P J we have p1 ^ ...^ pn � 0.

Lemma 23 (cf. [1]) If J is any subset of B, let FpJq be the set of elements
p P B such that p is larger than a finite intersection of elements in J . Then
FpJq is the filter generated by J .

Lemma 24 (cf. [1]) 1. A subset J is consistent iff J has the finite meet prop-
erty.
2. A subset is a maximal consistent subset iff it is an ultrafilter.
3. Any consistent set or proper filter is contained in an ultrafilter. More pre-
cisely, any proper filter is the intersection of all ultrafilters containing it.

Suppose A is a global quantifier theory. If I is a filter of A�pHq and A�pHq{I
is the quotient of the Boolean algebra A�pHq module I, we denote by A{I
the modification of A with A�pHq � A�pHq{I and A{I�pHq � A�pHq.

Suppose A is a locally finite quantifier theory over S. Suppose X P S is an
infinite set. We say an ultrafilter I of A�pXq is perfect if for any x P X and
p P A�pXq there is d P A�pXq such that @x.p_ pprd{xsq P I.

Lemma 25 Suppose Y is a countably infinite subset of X. An ultrafilter I of
A�pXq is perfect if for any y P Y and p P A�pXq there is d P A�pXq such
that @y.p_ pprd{ysq P I.

PROOF. By Corollary 13, for any x P X and p P A�pXq we have @x.p �
@y.ppry{xsq for some y P Y such that p is independent of y. By assumption
there is d P A�pXq such that @y.ppry{xsq _  ppry{xsrd{ysq P I. Then @x.p _
 pprd{xsq P I. Hence I is prefect by definition.

The importance of the notion of ultrafilter lies in the following lemma:

Lemma 26 Suppose I is a perfect ultrafilter of A�pZq. The modification
ArZs{I of A is a 2-model of A.
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PROOF. The condition M2 means that p@x.pqσ P I iff pσd{x P I for any x P
X, p P A�pXq, and d P A�pZq. Suppose p@x.pqσ P I. We have p@x.pqσ ¤ pσd{x

for any d P A�pZq by Theorem 18, (c). Since I is a filter of A�pZq, this implies
that pσd{x P I. Conversely, assume p@x.pqσ R I. Since A is locally finite we
can find some y P Z such that p@x.pqσ � @y.ppσy{xq and σpzq is independent
of y for any z in a support of p by Corollary 13. Hence @y.ppσy{xq R I. Since I
is perfect, we have @y.ppσy{xq _  ppσy{xrd{ysq P I for some d P A�pZq. Thus
@y.ppσy{xq R I implies that  ppσy{xrd{ysq �  ppσd{xq P I. Hence pσd{x R I. It
follows that the modification ArZs{I of A is a 2-model of A.

Suppose A is a quantifier theory. Let |A�| � |A�pXqZ | and |A�| � |A�pXqZ |
for any infinite set X and any countably infinite subset Z of X. Note that A�

and A� are well-defined.

Lemma 27 Suppose A is a locally finite quantifier theory and X is an infinite
set.
(a) |A�pXq| � |X| � |A�| � |X| � |A�| � Maxp|X|, |A�|q (cf. [8], p.164). In
particular, |A�| is infinite, and if |A�| is countably infinite then |A�pXq| �
|X|.
(b) |A�pXq| � |X| � |A�| � |X| � |A�| � Maxp|X|, |A�|q . In particular, if
|A�| is countably infinite then |A�pXq| � |X|.

PROOF. (a) Suppose Z � tz1, z2, ...u is a countably infinite subset of X.
For any x1, ..., xm P X let rx1, ..., xms : Z Ñ X be the map sending zi to xi

(i � 1, ...,m) and any other z P Z to itself. Since A is nontrivial and Z is
infinite we can find a non-closed element q P A�pZq. Suppose tz1, z2, ..., znu
(n ¡ 0) is a minimal support for q. Let π : X � t1, ..., nu Ñ X be a bijective
map. Define a map δ : X Ñ A�pXq sending x to qrπpx, 1q, ...πpx, nqs. Since
tπpx, 1q, ...πpx, nqu is a set of n distinct variables, δpxq is non-closed with a
support Ux � tπpx, 1q, ...πpx, nqu. If x � y then δpxq and δpyq are non-closed
elements with disjoint minimal supports Ux � Uy. Thus δpxq � δpyq. Hence δ
is injective. So |A�pXq| ¥ |X|. Since Z � X we have A�pXq � A�pZq. Thus
|A�pXq| ¥ |A�pZq| � |A�|. It follows that |A�pXq| ¥ |X|�|A�| � |X|�|A�| �
Maxp|X|, |A�|q. For any element p P A�pXq we can find an element p1 P A�pZq
and a sequence tx1, ..., xnu � X such that p � p1rx1, ..., xns. The map sending
each p P A�pXq to  p1, x1, ..., xn¡ is an injective map from A�pXq to the set
of finite sequences of elements in A�pZq YX. Thus |A�pXq| ¤ |A�pZq| � |X|.
It follows that |A�pXq| � |X| � |A�| � |X| � |A�| �Maxp|X|, |A�|q.
(b) The proof is similar.

Theorem 28 (Gödel’s Completeness Theorem for Quantifier Theories) Sup-
pose A is a global locally finite quantifier theory. Suppose X is an infinite set
and J is a consistent subset of A�pXq.
(a) There is an infinite set X� containing X and a perfect ultrafilter I of
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A�pX
�q containing κX�pJq, where κX : X Ñ X� is the inclusion map.

(b) The modification ArX�s{I of A is a 2-model of A with pκX � 1 for any
p P J .

PROOF. We may assume that A is nontrivial.
(a) Let λ � |A�pXq|. Since A is nontrivial locally finite and X is infinite,
we have λ � |A�pXq| � |X| � |A�| � Maxp|X|, |A�|q by Lemma 27; thus
λ ¥ |X| and λ ¥ |A�|. Let X� be a set containing X such that X�zX has
cardinality λ; variables in X�zX are called new variables. Then |X�| � λ, and
A�pX

�q is infinite by Lemma 27. Let Y be a countably infinite subset of X.
Then |Y �A�pX

�q| � |Y | � |A�pX
�q| � Maxp|Y |, |A�pX

�q|q � |A�pX
�q| �

|X�| � |A�| � |X
�| � |A�| � λ � |A�| � λ again by Lemma 27. We fix a well-

ordering

  yα, pα ¡α λ

of the set Y �A�pX
�q. For α   λ let

θα � @yα.pα _ ppαrzα{yαsq,

where zα is the first new variable such that pα and θβ are independent of zα
for any β   α. (This excludes at most |α| new variables, so there are some
left.) Let

Θ � tθα|α   λu, Γ � κX�pJq YΘ.

Since J is consistent, it has f.m.p. Since κX� is an injective homomorphism
of Boolean algebras, κX�pJq has also f.m.p. Thus κX�pJq is consistent. Also
X is a support for any member of κX�pJq. Thus any member of κX�pJq is
independent of any new variable. We show that Γ is consistent. Assume this
is not true. Then there is a finite intersection p � 0 of members of κX�pJq,
and α1   ...   αm   α   λ such that

p^ θα1 ^ ...^ θαm ^ θα � 0.

Take the least such α. Let

q � p^ θα1 ^ ...θαm .

Then

q � 0, q ^ θα � 0.

Since

θα � @yα.pα _ ppαrzα{xαsq,

we have

q ^ p@yα.pα _ ppαrzα{xαsq � 0.

Thus

pq ^ @yα.pαq _ pq ^ ppαrzα{xαsqq � 0.
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This implies
q ^ @yα.pα � 0, q ^ ppαrzα{xαsq � 0.

Hence we have
q ¤  p@yα.pαq, q ¤ pαrzα{xαs.

Since q, pα are independent of the new variable zα, applying Corollary 19 to
q ¤ pαrzα{xαs we conclude that

q ¤ @yα.pα.

Thus
q ¤ @yα.pα ^ p@yα.pαq � 0.

We obtain q � 0, which contradicts to the assumption that q � 0. This shows
that Γ has f.m.p. Hence Γ is consistent. Let I be an ultrafilter in A�pX

�q
containing Γ. Then I is a perfect ultrafilter in A�pX

�q. Also κX�pJq � Γ � I.
(b) By Lemma 26 we conclude that ArX�s{I of A is a 2-model of A, and
pκX � κX�ppq P I for any p P J . Thus pκX � 1.

Combining Theorem 33 and 22 we obtain:

Theorem 29 (Gödel’s Completeness Theorem for Quantifier Algebras) Sup-
pose A is a locally finite quantifier algebra over an infinite set X.
(a) Suppose J is a consistent subset of A�pXq. There is 2-model B of A and
a map σ : X Ñ B�pHq such that pσ � 1 for any p P J .
(b) If p, q P A�pXq and p � q there is a 2-model B of A and a map
σ : X Ñ B�pHq such that pσ � qσ.

PROOF. (b) Since p � q, either p ¦ q or q ¦ p. Assume the first case
holds. Then p ^ p qq � 0. By (a) we can find a 2-model B of A and a map
σ : X Ñ B�pHq such that pp^ qqσ � 1. Then pp^ qqσ � ppσq^p qqσ � 1.
Hence pσ � 1 and p qqσ �  pqσq � 1. Thus qσ � 0. It follows that pσ � qσ.

5 Quantifier Theories with Equality

Let A be a quantifier theory. An equality e of A consists of an element
epa, bq P A�pXq for any a, b P A�pXq such that the following condition is
satisfied:
E1. epa, bqσ � epaσ, bσq for any a, b P A�pXq and σ : X Ñ A�pY q.
E2. epa, aq � 1 for any a P A�pXq;
E3. p^ epx, yq ¤ prx{ys for any x, y P X and p P A�pXq.
A quantifier theory with equality is a quantifier theory together with an equality
e of A.
A normal quantifier model is a quantifier model with equality such that the
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following condition is satisfied:
M3. For any two elements a, b P A�pHq we have epa, aq � 1 and epa, bq � 0 if
a � b.

Suppose A and B are quantifier theories with equality. By a morphism ϕ of
quantifier theories with equality from A to B we mean a morphism of binding
theories such that the following condition is satisfied:
N5 ϕ�pepa, bqq � epϕ�paq, ϕ�pbqq.

Lemma 30 Suppose e is an equality of a quantifier theory A.
(a) p^ epx, yq � prx{ys ^ epx, yq.
(b) epx, yq is the smallest element p of A�pXq such that pry{xs � 1.

PROOF. (a) By E3 we have pry{xs ^ p pq ^ epx, yq ¤ pry{xs ^ p pqrx{ys �
pp ^  pqry{xs � 0ry{xs � 0. Thus pry{xs ^ epx, yq ¤ p. So pry{xs ^ epx, yq ¤
p^epx, yq. But E3 implies that p^epx, yq ¤ prx{ys^epx, yq. Thus p^epx, yq �
prx{ys ^ epx, yq.
(b) We have epx, yqry{xs � epy, yq � 1. Next if pry{xs � 1 then by (a) we have
p^ epx, yq � 1^ epx, yq. Thus epx, yq ¤ p.

Corollary 31 An equality of a quantifier theory is unique if exists.

Suppose A is a locally finite quantifier 2-model with equality. Denote by the
equivalence relation θ on A�pHq such that aθb iff epa, bq � 1. Then θ is a
congruence on A�pHq in the sense that pσ � pτ and aσθaτ for any a P A�pXq,
p P A�pXq, and σ, τ : X Ñ A�pHq such that σpxqθτpxq for any x P X. Let
A�pHq{θ be the quotient of A�pHq by θ. Let A{θ be the modification of A
with pA{θq�pHq � A�pHq and pA{θq�pHq � A�pHq{θ

Lemma 32 The modification A{θ of A is a normal quantifier model.

It follows that Theorem 33 also applies to locally finite quantifier theory with
equality:

Theorem 33 (Gödel’s Completeness Theorem for Quantifier Theories with
Equality) Suppose A is a global locally finite quantifier theory with equality.
Suppose X is an infinite set and J is a consistent subset of A�pXq. There is
an infinite set X� containing X and a perfect ultrafilter I of A�pX

�q con-
taining κX�pJq, where κX : X Ñ X� is the inclusion map. The modification
pArX�s{Iq{θ of A is a normal 2-model of A with pκX � 1 for any p P J .

Theorem 34 (Gödel’s Completeness Theorem for Quantifier Algebras with
Equality) Suppose A is a locally finite quantifier algebra with equality over an
infinite set X. Suppose J is a proper filter of A�pXq. There is normal 2-model
B of A and a map σ : X Ñ B�pHq such that pσ � 1 for any p P J .
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6 Ultraproducts of Models

Let I be a nonempty index set. Let A be a locally finite quantifier theory.
For each i P I let Bi be a 2-model of A. Let

±
iPI B

�
i pHq and

±
iPI 2 be the

Cartesian products. Denote by B the modification of A with B�pHq �
±

iPI 2
and B�pHq �

±
iPI B

�
i pHq, such that paσqpiq � aσi and ppσqpiq � pσi for any

a P A�pXq, p P A�pXq, σ : X Ñ B�pHq, where σi : X Ñ B�
i pHq is defined by

σipxq � σpxqpiq for any x P X.

Theorem 35 (a) B is a model of A.
(b) If I is an ultrafilter of B�pHq �

±
iPI 2 then B{I is a 2-model of A.

PROOF. (a) We prove that for any x P X, p P B�pXq � A�pXq, and
σ : X Ñ B�pHq we have p@x.pqσ �

�
dPB�pHq pσ

d{x. For any i P I we have

pp@x.pqσqpiq � p@x.pqσi ¤ pσ
dpxq{x
i � ppσd{xqpiq for any d P B�pHq, thus

p@x.pqσ ¤
�

dPB�pHq pσ
d{x. Conversely, suppose i P I such that pσd{xpiq �

pσ
dpiq{x
i � 1 for any d P B�pHq. Since dpiq could be any element in B�

i pHq,

we have pσ
d1{x
i � 1 for any d1 P B�

i pHq. Then p@x.pσiq �
�

d1PB�

i pHq pσ
d1{x
i �

�
d1PB�

i pHq 1 � 1 as Bi is a model of A. Thus p@x.pqσ ¥
�

dPB�pHq pσ
d{x. Hence

p@x.pqσ �
�

dPB�pHq pσ
d{x.

(b) We prove that for any x P X, p P B�pXq, and σ : X Ñ B�pHq we
have p@x.pqσ �

�
dPB�pHq pσ

d{x in B�pHq{I, i.e., p@x.pqσ P I iff pσd{x P I for

any d P B�pHq. First assume p@x.pqσ P I. Since by (a) we have p@x.pqσ ��
dPB�pHq pσ

d{x, thus p@x.pqσ ¤ pσd{x for any d P B�pHq, so pσd{x P I for any

d P B�pHq as I is a filter. Next assume p@x.pqσ R I. We have to find d1 : X Ñ
B�pHq such that pσd1{x R I. Since I is an ultrafilter, we have p @x.pqσ P I.
Suppose p @x.pqσpiq � 1. Then p @x.pqσi � 1. So p@x.pqσi � 0. Since Bi is a
model, there is di P B

�
i pHq such that pσdi{x � 0. Let d1 : X Ñ B�pHq be any

map such that dpiq � ai for any i with p @x.pqσpiq � 1. Then p @x.pqσpiq � 1
implies that pσd1{xpiq � 0, i.e.,  pσd1{xpiq � 1. Thus p @x.pqσ ¤  pσd1{x.
Hence  pσd1{x P I as I is a filter. Since I is an ultrafilter, we have pσd1{x R I.
This finish the proof.

Next assume A is a quantifier theory with equality and each Bi is a normal
2-model of A. Suppose I is an ultrafilter of B�pHq �

±
iPI 2. Let θ be the

equivalence relation on pB{Iq�pHq �
±

iPI B
�
i pHq such that aθb iff epa, bq � 1

in pB{Iq�pHq � p
±

iPI 2q{I for any a, b P
±

iPI B
�
i pHq.

Applying Lemma 32 we obtain the following theorem, which implies  Loś’s
Ultraproduct Theorem in model theory (see [1] p.180):

Theorem 36 Under the above assumptions pB{Iq{θ is a normal 2-model of
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A.

7 Polyadic Theories

A polyadic theory (over S) consists of a substitution theory A of Boolean
algebras (over S) together with a map @U : A�pXq Ñ A�pXq for any nonempty
set X P S, and U � X such that for any p, q P A�pXq:
1. @Hp � p.
2. @UYV p � @U@V p for any U, V � X.
3. p@Upqσ � @V ppσ

πq for any map σ : X Ñ A�pY q, U � X, V � Y , and any
injective map π : U Ñ V such that σpxq is independent of V for any x P X.
4. @Upp^ qq � @Up^ @Uq.
5. @Up ¤ p.
6. @Up � p if p is independent of U .
If S � tXu then A is a polyadic algebra over X in the sense of Halmos [10].

A polyadic model is a polyadic theory A over S with H P S satisfying the
following conditions:
M1. A�pHq is nonempty and A�pHq is a nontrivial Boolean algebra.
M2. For any U � X, p P A�pXq, and σ : X Ñ A�pHq we have p@U .pq ��
tpτ | τ |XzU � σ|XzU}, where τ : X Ñ A�pHq is a map.

We say A is a polyadic 2-model if A�pHq � 2 � t0, 1u.
Suppose A is a polyadic theory over S. A modification (resp. model) of A is a
polyadic theory (resp. polyadic model) B over S Y tHu such that A|SztHu �
B|SztHu.

Any polyadic quantifier theory induces a quantifier theory with @x � @txu.
Conversely, any locally finite quantifier theory determines a locally finite polyadic
theory with @Up � @x1...xn.p for any set U � X, where tx1, ..., xnu � U is any
finite support for p (cf. Lemma 16). Hence the notion of locally finite polyadic
theory is equivalent to that of locally finite quantifier theory (cf. [17]). For
other approaches to the theory of polyadic algebras see [2] - [7], [9] - [12] and
[17] - [20].

Note that Theorem 22 also applies to locally finite polyadic theories:

Theorem 37 (a) For any locally finite polyadic theory A over S there is a
global theory A1 such that A � A1|S .
(b) Any model of a global polyadic theory A1 induces a model of A1|S for any
S.
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